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1. Notation and convention

Unless stated otherwise, we adopt:

• Greek indices run from 0 to 3, Latin indices from 1 to 3, and repeated indices are summed
over their range.
• {xα}3

α=0 denotes coordinates in spacetime, with x0 = t denoting a time coordinate and
{xi}3

i=1 denoting spatial coordinates. We write { ∂
∂xα
}3
α=0 or simply {∂α}3

α=0 for the corre-
sponding basis of coordinate vectors.
• Signature convention for Lorentzian metrics is −+ ++.
• Indices are raised and lowered with the spacetime metric.
• We use units where Cl = 8πG = 1, where Cl is the speed of light (in vacuum) and G is

Newton’s gravitational constant.
• HN Denotes the Sobolev space with norm ‖·‖µ
• Def = definition, Theo = theorem, Prop = proposition, Ex = example

2. Introduction

The field of relativistic fluid dynamics is concerned with the study of fluids in situations when
effects pertaining to the theory of relativity cannot be neglected. It is as essential tool in high-energy
nuclear physics, cosmology, and astrophysics [20] [23]. Relativistic effects are manifest in models of
relativistic fluids through the geometry of spacetime. This can be done in two ways: (a) by letting
the fluid interact with a fixed spacetime geometry that is determined by a solution to vacuum
Einstein’s equations or (b) by considering the fluid equations coupled to Einstein’s equations. In
(a), we are neglecting the effects of the fluid’s matter and energy on the curvature of spacetime,
which in (b) such effects are taken into account. We will discuss both situations.

A crucial aspect of relativistic fluid dynamics is that the mathematical structures present in the
equations od motions are substantially different than those present in classical (i.e., non-relativistic)
fluids (e.g., the fluid velocity satisfies a constraint in the relativistic case, something with no analog
in classical fluids). Thus, results for relativistic fluids cannot be obtained as a simple extension of
techniques used for classical fluids.

3. Tools from Lorentzian geometry

The proper framework to discuss relativity and relativistic fluids is that of Lorentzian geometry.
Since our goal is to get to fluids as soon as possible, we will only introduce some rudimentary notions
that will be needed. Our approach is pragmatic in the sense that we will take the quickest route
to the concepts we need, avoiding as much as possible of the discussion of the geometric structures
involved. Students should be aware that by no means our discussion replaces an actual introduction
to the topic, and that what follows does not necessarily consist of the most appropriate way of
thinking about such concepts. Similar remarks apply throughout these notes whenever geometric
concepts are needed. As introduction to Lorentzian geometry in the context of general relativity
can be found in [15] and [22]. [BEE] and [O’u] offer an introduction to Lorentzian geometry as a
topic on its own.

Remark 3.1. For simplicity, we introduce most of the concepts in R4. The generalization to
differentiable manifolds is straightforward.
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3.1. Lorentzian metrics.

Definition 3.2. A Lorentzian metric in R4 is a map that assigned to each x ∈ R4 a symmetric non-
degenerate bilinear form g(x) : R4 → R of signature −+ ++. (Technical note: those familiar with
geometry will notice that we identify TxR4 with R4 itself; we will always make this identification)
A spacetime is R4 endowed with a Lorentzian metric, (R4, g).

Notation 3.3. We will often omit the x-dependence and write g for g(x).
Thus, a Lorentzian metric is an inner product that is not positive-definite. Because of this we

will often refer to g(v, w), v, w ∈ R4, as the (Lorentzian) inner product or simply product of v and
w.

Notation 3.4. We will often say simply “metric” for a “Lorentzian metric.”

Ex 3.5. The Minkowski metric is defined as follows.
Let m̃ be the matrix m̃ = diagonal(−1, 1, 1, 1). In standard rectangular coordinates we set
m(v, w) = vT m̃w = −v0w0 + v1w1 + v2w2 + v3w3,

= m̃αβv
αvβ,

where v = (v0, v1, v2, v3), w = (w0, w1, w2, w3) ∈ R4. and (·)T = transpose. (R4,m) is the Minkowski
space.

Note that m is a “constant” Lorentzian metric, i.e., it does not depend on x ∈ R4.
Of course, we can also express m with respect to other coordinates.

For example, taking (t, r, θ, φ), where (r, θ, φ) are spherical coordinates in R3, m̃ reads

m̃ =


m00

mrr

mθθ

mφφ

 =


−1

1
r2

r2 sin2 θ


where the entries not showed (e.g.,m0r,mrθ,etc.) are zero.

Ex 3.6. The Schwarzchild metric gsc is defined by taking spherical coordinates (t, r, θ, φ) as in the
previous example, and setting (for v and w expressed in spherical coordinates) gsc(v, w) = vT g̃scw,
where (entries not shown are zero)

g̃sc =


−(1− R

r
)

(1− R
r
)−1

r2

r2 sin2 θ

 , andR is a constant (R = 2GM
c2l

is the usual presentation)

This expression is valid for r > R only, but using different coordinates it can be extended to the
whole of R4, see “Krushal extension.”

Remark 3.7. For different choices of v, w,m(v, w) can be > 0,= 0, < 0. Also, we can have v 6= 0
with m(v, v) = 0. Similar for gsc. These are in fact general features of Lorentzian metrics.

More generally, consider a (Lorentzian) metric g and a coordinate basis { ∂
∂xα
}3
α=0. (In rectan-

gular coordinates, { ∂
∂xα
}3
α=0 is just the canonical basis of R4. We fellow the standard notation

of differential geometry. Recall our coordinate convention.) We define the matrix g̃ with en-
tries g̃αβ = g(∂α, ∂β), Which is a symmetric matrix since g is a symmetric bilinear form. Then,
g(v,m) = vT g̃w = g̃αβv

αwβ
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x0 = t

∂
∂x0

∂
∂x1 x1

Notation 3.8. From now on, we will write g for the matrix g̃ in a given basis, in practice identifying
g with its matrix expression. Thus we write:

g(v, w) = gαβv
αwβ.

The norm-squared(with respect to g) of a vector is defined by

|v|2g = g(v, w) = gαβv
αvβ

(Note that | · |g, sometimes written simply | · |, is not really a norm).
A Lorentzian metric defines at each point x ∈ R4, a double cone called the light-cone by the set

of vectors v based at x such that |v|2g = g(v, v) = 0

Light Cone

w

g(w,w) < 0

v
g(v, v) = 0

z
g(z, z) > 0

Vectors such that |v|2g = 0 are called null-like; |v|2g < 0 are called time-like and belong to the

“interior” of the light-cone; |v|2g > 0 are called space-like and belong to the exterior of the light-
cone. We call a curve time-like etc. if its tangent vector at each point is time-like etc.
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In the theory of relativity, the light cones correspond to the region where light (i.e., electromag-
netic radiation) propagates. Objects with mass propagate along time-like curves. No particle or
information can propagate along space-like curves: this would mean that their speed is greater
than the speed of light, violating a fundamental postulate of the theory of relativity (that “nothing
propagates faster than the speed of light”). In Minkowski space, the picture is (recall our units
convention):

x0 = t

(t, x(t))

speed = x
t
< 1

light-cone

speed = x
t
> 1

(t, x(t))

x1 = x

Notation 3.9. Since g is non-degenerate (i.e., g(v, w) = 0 for all w implies v = 0), the matrix (gαβ)
is invertible. We denote the entries of the inverse matrix by gαβ. Thus

gαβgβr = δαr

where δαr is the Kronecker Delta

3.2. Covariant derivative. A concept that will be important for us is that of a directional deriv-
ative, i.e., derivative is the direction of a vector X. Conceptually, this involves “projecting” onto
X. Because of this projection, the directional derivative will depend on the inner-product g. In
multivariable calculus, we define the derivative in the direction of X by

∇X = X · ∇
where · is the Euclidean inner product.∇X acts on a scalar function f by ∇Xf = X · ∇f =
Xα∂αf , and on a vector field v componentwise, i.e., (∇Xv)α = Xβ∂βv

α. Moreover,the product rule
holds,i.e.,∇X(v ·w) = (∇Xv) ·w+v · (∇Xw). Note the manifest dependence of ∇X on the Euclidean
inner product.

We want something similar when the inner product is given by a metric g.

Definition 3.10. The covariant derivative of a vector field v in the direction of X is the vector
field ∇Xv which expressed in coordinates {xα}3

α=0 (thus with respect to a coordinate basis {∂α}3
α=0

is given by
(∇Xv)α = Xµ(∇µv)α

where (∇µv)α is the α-component of the covariant derivative of v in the direction of ∂
∂xµ

(i.e., we
abbreviate ∇µ = ∇ ∂

∂xµ
) defined by

(∇Xv)α = ∂µv
α + Γαµλv

αvλ

where Γαµλ are the Christoffel symbols of g, defined by

Γαµλ =
1

2
gατ (∂µgλτ + ∂λgµτ − ∂τgµλ)

If f is a scalar function, we also define

∇Xf = Xµ∂µf
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(so the covariant derivative of a scalar agrees with the “calculus directional derivative”. In partic-
ular, ∇µf = ∂µf)

Remark 3.11. It is an exercise in tensor calculus to show that ∇Xv, as introduced above, is
well-defined, i.e., it is independent of the coordinate system we use.

3.3. Crucial observation about notation. Throughout the literature, one always writes,∇µv
α

for, (∇µv)α) i.e., ∇µv
α = (∇µv)α. Thus, ∇µv

α is the α-component of the covariant derivative of v
in the direction of ∂

∂xµ
, and not the covariant derivative of the α-component of v in the direction of

∂
∂xµ

.
The way we introduced covariant differentiation seems very ad hoc because of the pragmatic

approach we are taking here. Students should consult the suggested literature for a more elegant
and natural way of doing it.

The following proposition summarizes the basic properties of the covariant derivative. For con-
venience, some properties are stated in coordinates and in a coordinate-free fashion.

Proposition 3.12. For vector fields X,Y , and Z, and scalar function f and h, it holds that:
(a) ∇fX+gYZ = f∇XZ + g∇YZ.
(b) ∇X(Y + Z) = ∇XY +∇XZ.
(c) (product rule)
∇X(gαβY

αZβ) = gαβ∇XY
αZβ + gαβY

α∇XZ
β,

∇Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).
Note that the product rule would not hold if we were taking an ordinary derivative instead of a

covariant derivative, e.g., ∂µ(gαβY
αZβ) = gαβ∂µY

αZβ + gαβY
α∂µZ

β + ∂µgαβY
αZβ

(d) (torsion-free condition)
∇µ∇vf −∇v∇µf = 0
∇XY −∇YX = [X, Y ]
where [X, Y ] is a vector field called the commutator of X and Y defined as follows: X = Xα∂α,

Y = Y β∂β

[X, Y ] = Xα∂αY
β∂β − Y β∂βX

α∂α = (Xα∂αY
β − Y β∂αX

β)∂β = [X, Y ]α

where it can be shown that [X, Y ] is independent of the coordinate system used.
Property (c) is also known as compatibility between the covariant derivative and the metric. While

it is possible to define other derivative operators, one can show that there exists a unique derivative
operator satisfying (a) through (d) above. It is called the Levi-Civita covariant derivative or Levi-
Civita connection (covariant derivatives are also known as “connections”).

3.4. Duality and one-forms.

Definition 3.13. A one-form in R4 is a linear map that assigns to each x ∈ R4 a linear map
ω(x) : R4 → R

If we define the maps dxα : R4 → R by

dxα(
∂

∂xβ
) = δαβ

extending this definition linearly to all vectors, then a one-form ω can be expressed as

ω = ωαdx
α
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where the ωα are functions that are the components of ω in these coordinates. Given a vector field
v, we can define a one-form vb (real “v-flat”) by

v̄b(X) = g(v,X)

For any vector field X. It is not difficult to see that the components of vb are given by

(vb)α = gαβv
β.

vb is called the one-form dual to v. Similarly, given a one-form ω, we define the vector field ω#(real
“ω-sharp”) by

g
(
X,ω#

)
= ω(X)

for any vector field X (which is well defined in view of the non-degeneracy of g). It follows that in
components (

ω#
)α

= gαβωβ

ω# is called the vector field dual to ω.
The maps (·)b and (·)# are inverse of each other and provide isomorphisms between space of

vector fields and forms:

g(X, (vb)
#) = vb(X) = g(X, v)⇒ g(X, (Vb)

# − v) = 0 for all X

and (ω#)b(X) = g(ω#, X) = ω(X)⇒ ((ω#)b − ω)(X) = 0 for all X

In view of the above, we can identify v and ω with their duals. Therefore, we will no longer write b
and # (it will be clear from the context whether we are dealing with a vector field or a one-form).
In components, an upper index indicates a vector field and a lower index a one-form. Thus

vα = gαβv
β and ωα = gαβωβ

Because of the above formulas, the operations of passing from a vector field to a form and vice-
versa are known as raising and lowering indices (lowering an index: vector field 7→ form; raising
an index: form 7→ vector field). We can also use these isomorphisms to define an inner product
between one-forms ω and µ by

g(ω, µ) = gαβω
αµβ = gαβωαµβ

Where the last equality follows from a simple calculation. Moreover, for one-forms or vector fields:
g(v, ω) = gαβv

αωβ = vαωα = vαω
α = gαβvαωβ.

We will now extend covariant differentiation to forms. We do this by demanding it to satisfy a
product rule.

Definition 3.14. The covariant derivative of a one-form ω in the direction of a vector field X is
defined as the one-form ∇Xω given by

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY )

For any vector field Y . Using the definition of ∇XY
α we find

∇µωα = ∂µωα − Γλµαωλ

Where, similarly to what we had for vector fields, ∇µωα means (∇ ∂
∂xµ
W )α. The product rule holds

for ∇µ(fωα), f a function.
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3.5. Tensors. We define the linear map dxα ⊗ dxβ : R4 × R4 → R , called the tensor product of
dxα ⊗ dxβ, by

dxα ⊗ dxβ(X, Y ) = dxα(X)dxβ(Y ).

Using this expression we can generalize one-forms, forming maps that act on an on ordered pairs of
vector fields. A two-tensor T is defined, relative to coordinates, by the map

T = Tαβdx
α ⊗ dxβ,

where the Tαβ, called the components of T in these coordinates, are functions. T acts on X =
Xα∂α and Y = Y α∂α

T (X, Y ) = Tαβdx
α ⊗ dxβ(X, Y ) = TαβX

αY β.

T is called symmetric if Tαβ = Tβα
Arguing similarly to what we did for one-forms, we can extend covariant differentiation to two-

tensors, leading to the following expression in coordinates

∇γTαβ = ∂γTαβ − ΓλγαTαβ − ΓλγβTαλ,

where, as above, ∇γTαβ = (∇γT )αβ.
It can be showed that these definitions do not depend on the system of coordinates one uses. We
will also encounter two-tensors, that are tensor products of one-forms, i.e., Tαβ = Wαµβ , in which
case ∇γTαβ can also be computed by the product rule:

∇γTαβ = ∇γ (ωαµβ) = ∇µωαµβ + ωα∇γµβ.

From these definitions, we see that the matric is a symmetric two-tensor:

g = gαβdx
α ⊗ dxβ.

Compatibility of covariant differentiation with the metric becomes:

∇γgαβ = 0.

Given a two-tensor, its trace is the function

tr(T ) = gαβTαβ.

Again, the result does not depend on the system of coordinates. Note that

∂µ tr(T ) = ∇µtr(T ) = gαβ∇µTαβ.

The divergence of a vector field v is the function div(v) defined as

div(v) = gαβ∇αvβ = ∇αv
α.

We can also take the divergence of a two-tensor: it is the one-form div(T) defined as

div(T )β = ∇αT
α
β,

where Tαβ = gαβTγβ is Tαβ with the first index raised (see below).
The covariant wave operator �g applied to a scalar function f is defined by any of the following

equivalent expressions:
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�gf = gαβ∇α∇βf

= ∇α∇αf, where by definition ∇α = gαβ∇β

=
1√
|g|
∂α

(√
|g|gαβ∂βf

)
= gαβ∂α∂βf − gαβΓγαβ∂γf.

We can also define a covariant wave operator applied to vector fields and tensors by ∇α∇αV
β,

∇α∇αTβγ, etc.

3.6. Some further remarks on tensors etc. As before, our pragmatic approach leads to some-
what ad hoc definition of two-tensors, their covariant derivative and their trace, but this will suffice
to our purposes. The above concepts cover almost all the geometric background we will need. Here,
we introduce a few more ideas that will occasionally be needed, and make some observations.

In the terminology, “two” refers to the fact that T acts on two vector fields, although we can let
T act in one vector field, resulting in a one-form:

T (X, ·) = Tαβdx
α ⊗ dxβ(X, ·) = XαTαβdx

β

We can also consider T (·, X), which in general will be different than T (X, ·) unless T is symmetric.
Strictly speaking, our definition of two-tensors is that of a covariant two-tensor, covariant here

referring to the fact that it acts on vectors. We can also have vector fields act as one-forms in the
same way as one-forms act on vector fields, i.e. we define

∂

∂xα
(
dxβ
)

= δβα

and extend this definition linearly to have ∂
∂xα

act on any one-form. We can then define the tensor
product of ∂α and ∂β by

∂α ⊗ ∂β(ω, µ) = ∂α(ω)∂β(µ)

for any two one-forms ω and µ. (Note: ∂α(ω) is defined above, it is not the derivative of ω; instead,
ω = ωαdx

α, ∂α(ω) = ∂α(ωβdx
β) = ωβ∂α(dxβ) = ωβδ

β
α = ωα.) We can then define a contravariant

two-tensor by

T = Tαβ∂α ⊗ ∂β,
which acts on pairs of one-forms. T is called symmetric if the functions Tαβ are symmetric.

Defining the tensor product of vector fields and one-forms in the obvious way, we can form mixed
contravariant covariant tensors. For example, a 1-contravariant 1-covaraint tensor is

T = Tαβ∂α ⊗ dxβ,

which acts on a pair (ω,X) of a one-form and one vector field.
Obviously, there is no need to restrict ourselves to two-tensor, (i.e., tensors that act on pairs of

objects). A k-contravariant and l-covariant tensor, or a (k, l) tensor for short (where (k, l) is called
the rank of the tensor), is given by

T = Tα1···αk
β1···βk∂α1 ⊗ · · · ⊗ ∂αk ⊗ dxβ1 ⊗ · · · ⊗ dxβ`

which acts on (ω1, · · · , ωk,︸ ︷︷ ︸
k one-forms

X1, · · · , X`︸ ︷︷ ︸
l vector fiedds

)
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For our purposes, the whole distinction between covariant and contravariant tensors is immaterial,
as we can use the isomorphism between one-forms and vector fields to pass from one to the other.
For example, the (0, 2) tensor

T = Tαβdx
α ⊗ dxβ

can be identified with the (1, 1) tensor

T = Tαβ∂α ⊗ dxβ

or yet with the (2, 0) tensor

T = Tαβ∂α ⊗ ∂β,
where Tαβ = gαγTγβ and Tαβ = gαγgβδTγδ. Thus, a (k, l) tensor can be thought of as a (k+ 1, `− 1)
tensor etc.

We note that for tensors that are not symmetric, we have to pay attention to the order of the
indices when they are raised and lowered. E.g., if we write Tαβ , it is not clear if it means gαγTγβ or
gβγT

γα. Both expressions agree if T is symmetric since

gαγTγβ = gαγgγδgβτT
δτ = δαδ gβτT

δτ = gβτT
ατ

but are otherwise different. With the proper care with the order of the indices, we can always raise
and lower indices, and do not need to keep the distinction between covariant and contravariant
tensor.

Using these ideas we can also write the trace as

tr(T ) = gαβTαβ = Tαα,

which we can write simply Tαα if T is symmetric.
A sum over an upper and a lower index is called a contraction. E.g. in the expression Tαβαγ we

are contracting the first index with the third. Because this can also be written as

Tαβαγ = gαδTαβδγ.

Contractions are sometimes also called traces, although for an arbitrary (γ, `) tensor we have to
specify which indices are being traced (i.e., contracted).

Notation 3.15. We often make an abuse of language and reference to the components of a tensor,
e.g., Tαβ, as “the tensor.”

The above constructions also allow us to construct new tensors out of old ones. E.g, if T =
Tαβdx

α ⊗ dxβ and U = Uα
β∂α ⊗ dxβ, then V = T ⊗ U is given by

V =
(
Tαβdx

α ⊗ dxβ
)
⊗
(
Uγ

δ∂γ ⊗ dxδ
)

= TαβU
γ
δ︸ ︷︷ ︸

=Vαβ
γ
δ

dxα ⊗ dxβ ⊗ ∂γ ⊗ dxδ

and the product rule holds for such tensors:

∇µVαβ
γ
δ = ∇µTαβU

γ
δ + Tαβ∇µU

γ
δ

Remark 3.16. The geometric framework outlined so far is essential for those who want a solid
understanding of relativistic fluids (after all, relativity is a geometric theory). However, students
who do not have a background in geometry should still be able to follow the main ideas of these
lectures. In this regard, if one thinks of a two-tensor T as a matrix whose entries are Tαβ, and of
the covariant derivative ∇µ as “the ordinary derivative ∂µ + stuff that can usually be treated as
lower order,” then one will be able to follow much of what follows.
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4. The relativistic Euler equation

The dynamics of a perfect (i.e., no viscous) relativistic fluid is described by the relativistic Euler
equations to be introduced below.

Definition 4.1. The energy-momentum tensor of a relativistic perfect isotropic fluid in R4 is the
symmetric two-tensor

Tαβ = (p+ %)uαuβ + pgαβ,

where gαβ is a Lorentzian metric, βand % are real-valued functions representing the pressure and
energy density of the fluid, uα is a vector field (one-form, recall our identification) representing the
(four-) velocity of fluid and normalized by

|u|2g = gαβu
αuβ = uαuα = −1

The energy-momentum tensor is a fundamental object that encodes the behavior of matter and
is essential when one considers the interaction of gravity and matter (i.e., coupling to Einstein’s
equation). Each theory of matter (e.g., electromagnetism, elasticity, etc.) has its own energy
momentum tensor (we will discuss more about this when we consider theories with viscosity). The
fluid is called isotropic as we are assuming that if one is at rest with respect to the fluid then
the stresses in all directions of the fluid are the same, although it is possible to construct fluid
models without this assumption [20]. The fluid velocity is sometimes called the four-velocity to
emphasize that in relativity the velocity is a vector field in spacetime (so it has four components).
The assumption |u|2g = −1 can be understood as follows. First, it says that uα is timelike, so fluid
particles do not travel faster than the speed of light. Second, the energy density % entering in Tαβ is
the energy measured by an observer travelling with the fluid (i.e., at rest with respect to the fluid).
It is possible to show, using kinetic theory, that the energy density measured by an observer with
velocity vα will be vαvβTαβ. Thus, for the fluid velocity itself we need to have % = uαuβTαβ, thus
uαuα = −1. Let us make another remark about kinetic theory: it also gives the above expression
for Tαβ as a“continuum limit” when viscosity is ignored (and under certain natural assumptions)
[13]. While kinetic theory provides what is probably the best justification for defining Tαβ by the
above formula, it is also possible to postulate Tαβ motivated by physical considerations [23].

Definition 4.2. The baryon density current of a relativistic perfect isotropic fluid is defined by

Jα = nuα,

where n is a real valued function representing the baryon number density of the fluid and uα is the
fluid’s velocity as above.

Physically, the baryon number density gives the density of matter of the fluid: the rest mass
density (measured by an observer at rest w.r.t the fluid) is given by nm, where m is the mass of
the baryonic particles that constitute the fluid (these are notions from kinetic theory [20]).

Notation 4.3. We will not deal with non-isotropic fluids so from now on we omit “isotropic”.
Physically, the quantities p, %, and n are not all independent and are related by a relation known

as an equation of state (whose form is determined experimentally or from kinetic theory). Under
“normal circumstances” (e.g., absent phase transitions), this relation is invertible in the sense that
knowledge of any two quantities, e.g., % and n, determines the third, e.g., p. In this case, we can
choose any two of the three quantities to be the functional unknowns. We will choose here % and n
and assume that p is given as a function of these quantities, i.e.,p = p(%, n).



12 MARCELO DISCONZI

Definition 4.4. The relativistic Euler equations are defined by the equations:

∇αT
α
β = 0, (conservslion of energy-momentum)

∇αJ
α = 0, (conservslion of baryoic charge)

p = p(%, n), (equation of state)

where Tαβ and Jα are as above, p = p(%, n) is a given equation of state, ∇ is the covariant derivative
of the metric gαβ figuring in Tαβ. Note that the fluid’s velocity is normalized as in the definition of
Tαβ.

Remark 4.5. On physical grounds we want % ≥ 0, n ≥ 0 and, in most models, p ≥ 0. From the
point of view of the Cauchy problem, these should be assumed for the initial data and showed to
propagate.

Remark 4.6. As said is the introduction, we can consider a relativistic fluid on a fixed background
or coupled to Einstein’s equations. In the first case, which will be treated in this section, we assume
g given, but we keep track of derivatives of g for future application to Einstein’s equation

We introduce the tensor Παβ which corresponds to projection onto the space orthogonal to u.
Explicitly:

Παβ = gαβ + uαuβ,

So that Παβu
β = uα + uα uβu

β︸︷︷︸
=−1

= 0, and if v is orthogonal to u we have παβv
β = vα + uα uβv

β︸︷︷︸
=0

= vα

. We also note that uαuα = −1 implies

uα∇βuα = 0.

It is convenient to decompose ∇αT
α
β in the directions parallel and orthogonal to u. First:

∇αT
α
β = ∇α((p+ %)uαuβ + pgαβ)

= uα∇α(p+ %)uβ + (p+ %)∇αu
αuβ + (p+ %)uα∇αuβ +∇βp,

thus
uβ∇αT

α
β = −uα∇α(p+ %)− (p+ %)∇αu

α + (p+ %)uα uβ∇αuβ︸ ︷︷ ︸
=0

+uβVβp

= −uα∇α%− (p+ %)∇αu
α.

Πγβ∇αT
α
β = uα∇α(p+ %) Πγβuβ︸ ︷︷ ︸

=0

+(p+ %)∇αu
α Πγβuβ︸ ︷︷ ︸

=0

+(p+ %)Πγβuα∇αuβ + Πγβ∇βp

= (p+ %)uα(gγβ∇αuβ︸ ︷︷ ︸
=∇αuγ

+uγ uβ∇αuβ︸ ︷︷ ︸
=0

) + Πγβ∇β%

= (p+ %)uα∇αu
γ + Πγβ∇βp.

Writing ∇αJ
α explicitly:∇αJ

α = ∇α(nuα) = uα∇αu+ u∇αu
α.

Therefore we can rewrite the relativistic Euler equations as:

uα∇α%+ (p+ %)∇αu
α = 0,

(p+ %)uα∇αu
β + Πβα∇αp = 0,

uα∇αu+ u∇αu
α = 0.

The first equation is the conservation of mass/energy, while the second equation is the con-
servation of momentum. These equations reduce to the non-relativistic Euler equations in the
non-relativistic limit [20].
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While it is not difficult to obtain local existence and uniqueness by writing the above equations
as a first order symmetric hyperbolic system (see, e.g. [2] [5]), we will use a different approach
due to Lichnerowicz [18] that makes the rile of the characteristics manifest and connects with what
we will discuss later. In fact, as we will see, but also as expected physically, there are two types
of propagation in the fluid: sound waves and transport of vorticity. These correspond to different
characteristics and thus should be treated differently. The first order symmetric hyperbolic system,
however, treats both at the same level.

Before continuing, we will need a few more notions.

4.1. Thermodynamic properties of relativistic fluids. We begin introducing the following
quantities:

• The internal energy density E of the fluid:

% = n(1 + E)

(strictly speaking the factor n should be the rest mass density nm, see above, but there is
no harm in setting m = 1 here). Thus, the energy density of the fluid takes into account
the energy coming from the fluids rest mass.
• The specific enthalpy h of the fluid

h = p+ %︸ ︷︷ ︸
n

, assuming n > 0.

• We assume the existence of functions s and θ, called the entropy density and temperature
of the fluid, such that the first law of thermodynamics holds:

dp = n dh–nθ ds,

which can also be written

d% = hdn− unθds,

dE = −pd
(

1

n

)
+ θds.

As before, we can choose which two functions among these thermodynamic quantities are inde-
pendent. Later we will choose s and h (so p, u, θ, % and E are functions of s and h.

With these definitions, we can write

Tαβ = (p+ %)uαuβ + pgαβ = nhuαuβ + pgαβ, then

∇αT
α
β = ∇α(nhuα)uβ + nhuα∇αuβ +∇βp, so

uβ∇αT
α
β = −∇α(nhuα) + uβ∇βp

= −h∇α(nuα)︸ ︷︷ ︸
=0

−nuα∇αh+ uβ∇βp︸ ︷︷ ︸
=uα(−u∇αh+∇αp︸ ︷︷ ︸

=−uθ∇αs

)

Under the physically natural assumption θ > 0, which we will hereafter assume, we conclude:

uα∇αs = 0.

Physical interpretation: the fluid motion is locally adiabatic, i.e., entropy is constant along the flow
lines of the fluid.
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4.2. Relativistic vorticity. A very important quantity in fluids is the vorticity. In classical
physics, it is the curl of the velocity. Since the curl in 3d can be identified (using Hodge dual-
ity) with the exterior derivative of the velocity (thought of as a one-form), it seems natural to
define the vorticity of a relativistic fluid (where we are in four dimensions) as the exterior derivative
of the four-velocity u. This is “almost” right, but the “correct” definition requires an adjustment.

Definition 4.7. The enthalpy current w is defined as

wα = huα.

The vorticity Ω is defined as the two-form dw. In components it is given by the equivalent expres-
sions:

Ωαβ = ∂α(huβ)− ∂β(huα)

= ∇α(huβ)−∇β(huα).

One reason to define the vorticity as above (rather than, say, du) is to have a relativistic version
of Kelvin’s circulation theorem. For a classical fluid with velocity v, we define its circulation along
a closed loop γ as

Ccl. =

∮
γ

v · d`.

Kelvin’s theorem states that this quantity is conserved along fluid lines, i.e.,

DtCcl. = (∂t + v · ∇)Ccl. = 0

This theorem has such a clear physical interpretation as “conservation of vortices,” that we expect
something similar to hold for relativistic fluids. Indeed it does but the quantity that is conserved
now is

C =

∮
γ

wαdx
α =

∮
γ

huαdx
α.

with this definition;

uµ∇µC = 0

The same way that the classical proof, goes through using dv, which is the vorticity, the relativistic
version involves d(hu), leading to a natural definition of the vorticity as we did. So, [20] for details.

Next, we derive an important relation between the vorticity and the entropy. Direct computation
gives

uαΩαβ = uα(h∇αuβ +∇αhuβ − h∇βuα −∇βhuα)

= h uα∇αuβ︸ ︷︷ ︸
=− 1

p+%
Παβ∇αp=

1
nh

Παβ∇αp by Πγβ∇αTαβ =0

+uβu
α∇αh+∇βh

= − 1

n
Πα
β∇αp+ uβu

α∇αh+∇βh

= − 1

n
∇βp+∇βh︸ ︷︷ ︸

=θ∇βs

−uβ(
1

n
uα∇αp− uα∇αh︸ ︷︷ ︸

=−uα∇αs=0

)

Therefore:

uαΩαβ = θ∇βs.
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This Equation is known as the Lichnerowicz equation. It implies that for an irrotational fluid,
i.e., a fluid with Ω = 0, the entropy must be constant, a result with no analogue in classical physics.

4.3. Local existence and uniqueness. We will rewrite the relativistic Euler equations as a system
for w,Ω, b, and s. We assume that p, n, θ, and E are known functions of h and s.

We begin with an evolution equation for the vorticity. We can write the Lichnerowicz equation
as (after multiplying by h)

ιwΩ = hθds,

where ιw is the interior contraction of the two-form Ω with w, given by

(ιwΩ)α = wµΩµα.

Taking the exterior derivative:
d(ιwΩ) = d(hθ) ∧ ds,

where we used that d2 = 0, and ∧ is the wedge product of forms, which for one-forms is simply

w ∧ µ = (wαdx
α) ∧ (µβdx

β) = wαµβdx
α ∧ dxβ

=
∑
α<β

(wαµβ − µβwα)dxα ∧ dxβ

since dxα ∧ dxβ = −dxβ ∧ dxα.
We now recall the following formula for the Lie derivative of a form in the direction of a vector

field X:
LXµ = d(iXµ) + iX(dµ).

In our case, dΩ = 0 since Ω = dw , so

LwΩ = d(hθ) ∧ ds.
Using the formula for the Lie derivative in terms of covariant derivatives, expanding the RHS and
writing everything in components gives:

wµ∇µΩαβ +∇αw
µΩµβ +∇βw

µΩαµ

= ∇α(hθ)∇βs−∇β(hθ)∇αs,

which is our evolution equation for the vorticity.
This equation is remarkable because of the following. From the momentum equation we have

uα∇αu ∼ ∂p ∼ ∂s. Commuting with it to get w we have uα∇αw ∼ ∂s, ∂h. Since Ω ∼ ∂w, we
would thus naively expect uα∇αΩ ∼ ∂2s, ∂2h.However, this does not happen: the structure of the
Lichnerowicz equation (which in particular casts ∂s as an exact derivative ds) leads to only one
derivative on the RHS. This “gain of derivative” will help with existence and uniqueness below.

In particular, we point out how the first law of thermodynamic was used is the derivation of the
vorticity equation; we did not simply apply uµ∇µ to Ω and used ∇αT

α
β = 0.

Before continuing, let us consider an application. As seen, a necessary condition for irrotationality
is that s is a constant. In fact, we have:

Proposition 4.8. If s is constant and Ω = 0 on {t = 0}, then s is constant and Ω = 0 for t > 0.

Proof. Integrating uα∇αs = 0 along the flow lines of s gives that s = constant on spacetime. Thus,
the equation for the vorticity gives

LwΩ = 0,

which is a homogeneous transport equation for Ω. Since Ω |t=0 = 0, uniqueness gives Ω = 0. �
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Remark 4.9. Of course, when we say Ω = 0 for t > 0, we are referring to t belonging to an interval
where the solution exists.

Next we derive an evolution equation for w. We start with the Hodge-Laplacion (not really a
Laplacion because g is Lorentzian) of w:

�Hw = (dd∗ + d∗d)w = dd∗w + d∗Ω,

where d∗ is the adjoint of d. Since d∗w = −∇αw
α, compute:

d∗w =−∇αw
α = −∇α(huα) = −uα∇αh− h ∇αu

α︸ ︷︷ ︸
=−uα∇αu

u

=− uα∇αh+
h

u
uα∇αn

=− wα(
∇αh

h
− uα∇αu

u
) = ιwdF,

where F = log n
h
. Thus

dd∗w = d(ιwdF ) = LwdF.

It will be convenient to introduce h̃ = h2 and consider F = F (h̃, s). Then, since wαwα = −h2

∇αF =
∂F

∂h̃
∇αh̃+

∂F

∂s
∇αs = −∂F

∂h̃
∇α(wβwβ) +

∂F

∂s
∇αs

= −2
∂F

∂h̃
wβ∇αwβ +

∂F

∂s
∇αs

= −2
∂F

∂h̃
wβ(Ωαβ +∇βwα) +

∂F

∂s
∇αs

= −2
∂F

∂h̃
wβ∇βwα + 2

∂F

∂h̃
wβΩβα︸ ︷︷ ︸
=hθ∇αs

+
∂F

∂s
∇αs

= −2
∂F

∂h̃
wβ∇βwα + (2

∂F

∂h̃
hθ +

∂F

∂s
)∇αs

To simply the notation, we henceforth adopt:

Notation 4.10. We will use B to indicate a generic expressions (which can vary from line to line)
depending on at most the number of derivatives of its arguments.

Using the formula for the Lie derivative in terms of covariant derivatives:

(LwdF )γ = −α∂F
∂h̃

wαwβ∇α∇βCγ + (2
∂F

∂h̃
hθ +

∂F

∂S
)wα∇α∇γs+Bγ(∂g, ∂s, ∂w).

but

wα∇α∇γs = wα∇γ∇αs = ∇γ(

=0︷ ︸︸ ︷
wα∇αs)−∇γw

α∇αs

= Bγ(∂g, ∂s, ∂w),

so

(LwdF )γ = −2
∂F

∂h̃
wαwβ∇α∇βCγ +Bγ(∂g, ∂s, ∂w).

On the other hand

(�Hw)γ = −gαβ∇α∇βwγ +Rγαw
α, so
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− gαβ∇α∇βwγ +Rγαw
α = −2

∂F

∂h̃
wαwβ∇α∇βwγ + (d∗Ω)γ +Bγ(∂g, ∂s, ∂w).

Compute:

2
∂F

∂h̃
= 2

∂F

∂h

∂h

∂h̃︸︷︷︸
= 1

2h

=
1

h

∂

∂h
log

n

h
=

1

h
(
1

n

∂n

∂h
− 1

n
)

= − 1

h2
(L− h

n

∂u

∂h
), thus

(−gαβ − (1− h

u

∂u

∂h
)
wαwβ

h2
)∇α∇βwγ

= −Rγαw
α + (d∗Ω)γ +Bγ(∂g, ∂s, ∂w).

Next, we apply wµ∇µ to this equation and compute:

wµ∇µ(d∗Ω)γ = wµ∇µ∇νΩ
ν
γ

= wµ∇ν∇µΩν
γ︸ ︷︷ ︸

=∇ν( wµ∇µΩν
γ︸ ︷︷ ︸

=Bγ (∂g,∂w,∂s,∂h,Ω)

)−∇vwµ∇µΩνγ

+Rµνw
µΩv

γ +Rγ
µ
νλw

λΩµ
λ

= Bγ(∂
3g, ∂2w, ∂2s, ∂2h, ∂Ω).

Thus [
gαβ +

(
1− h

n

∂u

∂h

)
wαwβ

hα

]
wµ∇µ∇α∇βwγ

= Bγ(∂
2g, ∂2w, ∂2s, ∂2h, ∂Ω).

Let us suppose that h
n
∂u
∂h
> 0, so we can define 1

z
= h

n
∂u
∂h

and the above becomes:[
zgαβ − (1− z)

wαwβ

h2

]
wµ∇µ∇α∇βwγ

= Bγ(∂
3
g, ∂

2
w, ∂

2
s, ∂

2
h, ∂Ω).

Proposition 4.11. Let

Gαβ = zgαβ − (1− z)
wαwβ

h2

= zgαβ − (1− z)uαuβ

where 0 < z ≤ 1 and |u|2g = −1. Then, Gαβ is an (inverse) Lorentzian matric, and the operator

Gαβwγ∂α∂β∂γ =

[
zgαβ − (1− E)

wαwβ

h2

]
wγ∂α∂β∂γ

is a strictly hyperbolic third order operator.

Proof. This can be verified, for example, by computing the characteristics associated to Gαβ and
Gαβwγ. �

We now consider the equations derived for s, Ω and w. In these equations, we treat h as a
function of w by h =

√
−wαwα, and expand the covariant derivatives, absorbing the terms in the
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Christoffel symbols into the terms on the RHS of the equations. Doing so, we find (we multiplied
the equation for s by h):

wα∂αs = 0,

wµ∂µΩαβ = Bαβ(∂g, ∂w, ∂s,Ω),[
zgαβ − (1− z)

wαwβ
√−wµwµ

]
wγ∂α∂β∂γwδ = Bδ(∂

3g, ∂2w, ∂2s, ∂Ω)

And we assume that 0 < z ≤ 1 (we will justify this assumption later on). We use the notation
Gαβ for the term in bracket as in the above proposition and note that the order of derivatives
appearing on the RHS is compatible with the order of this mixed system so that its characteristics
are given simply by the characteristics of the operators on the LHS (recall that at this point g is
considered given).

Thus the system’s characteristics are determined by

wαξα = 0

which are the flow lines of w (or of u), and

Gαβξαξβ = 0

which are the characteristics cones, (i.e., the analog of the light cone if G were the Minkowshi
metric) of the metric G.

Denote by ‖·‖µ the HN -Sobolev norm in Ω3.

Involving standard energy estimates for strictly hyperbolic operators (see, e.g.,[16],[17]), we obtain

‖s‖N . ‖s(o)‖N +

t∫
0

B(‖w‖N , ‖s‖N),

‖Ω‖N . ‖Ω(o)‖N +

t∫
0

B(‖g‖N+1, ‖w‖N+1, ‖s‖N+1, ‖Ω‖N),

‖w‖N+2 . ‖w(o)‖N+2 +

t∫
0

B(‖g‖N+3, ‖w‖N+2, ‖s‖N+2, ‖Ω‖N+1),

where we use the following above of notations: when we estimate a term like ‖∂2s‖N , the derivatives
could be time derivatives, so we have ‖∂2s‖N . ‖s‖N+2 + ‖∂ts‖N+1 + ‖∂2

t s‖N . But from the point
of view of derivative counting all terms contribute the same. Also, on the LHS, we should have
‖w‖N+2 + ‖∂tw‖N+1 + ‖∂2

tw‖N , but all terms contribute as ‖w‖N+2. Switching N to N + 1 in the
estimate for s and N + 2 to N + 1 in the estimate for w, and defining

N = ‖s‖N+1 + ‖Ω‖N + ‖w‖N+1

we obtain:

N . N (o) +

t∫
0

N ,

which implies the energy bound for small t:

N . C(N (o)).
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This estimate is the main ingredient for a proof of local existence and uniqueness, similarly
to the standard argument for non-linear wave equations (see the rough notes on non-linear wave
equations).

Other elements for the proof are:
Under the above assumptions (0 < z ≤ 1, n, θ > 0, etc.), it is possibly to successively solve for

the time derivatives ∂kt u, ∂
k
t s, ∂

k
t h in terms of the data. This implies (a) that we can construct

initial data for the s,Ω, w system out of data for the original system, and (b) that we can construct
analytic solutions to the original equations of motions. These analytic solutions satisfy the system
for w,Ω, w with Ωαβ = ∂α(huβ)− ∂β(hwα) and wα = huα. Given non-analytic data to the original
system, we approximate it by analytic data and use the energy bound (that holds to the analytic
solutions) to obtain, via a limit, a non-analytic solution to the original equations of motion. In
particular, we have a solution to

(p+ %)uα∇αuβ + Πα
β∇αp = 0,

where Π is, as before, the projection onto the orthogonal space to u, but we do not know yet it to
have the form Παβ = gαβ + uαuβ because we have not yet showed that |u|2g = −1. However, for

(p+ %) > 0(which will hold for small time, but see below for more), contracting with uβ :

uβuα∇αu
β =

1

2
uα∇α(|u|2g) = 0,

thus u remains normalized if normalized initially.
Finally, uniqueness can also be proved with an energy estimate (in a lower norm) for the difference

of the two solutions.
Let us now discuss the assumption 0 < z ≤ 1. Given an equation of state p = p(%, s), the fluid’s

sound speed defined as

cαs =

(
∂p

∂%

)
s

,

which is a well-defined quantity for physical equations of state since the pressure of a fluid cannot
decrease with an increase in density. The sound speed is also given by the following equivalent
expressions [20] :

c2
s =

1

h

(
dp

dn

)
n

=
n

h

(
dh

dn

)
s

=
1

h

((
∂p

∂n

)
E

+
dE

dn

(
∂p

∂E

)
n

)
=

1

h

((
∂p

∂n

)
E

+
p

n2

(
∂p

∂E

)
n

)
.

It follows that z = c2
s. Thus, 0 < z ≤ 1 means that the fluid’s sound speed is positive and no

greater than the speed of light.
We conclude that the characteristic cones determined by Gαβξαξβ = 0 correspond to propagation

of sound in the fluid. Thus, the characteristics of the relativistic Euler equations correspond to two
types of propagation phenomena transport along the flow lines of u and sound waves (we identify
Gαβξαξβ = 0 as waves because G is a Lorentzian metric).

We remark that N in the above estimates has to satisfy N > 2
3
, since we need to use Sobolev

estimates and product estimates. From uα∇αs = 0, we obtain that s will remain positive if initially
positive, and from ∇αJ

α = 0, written as uµ∇µ log u = −∇µu
µ, the same holds for u (provided, say,

that the fluid’s velocity does not blow up). Depending on the equation of state, from the theorem
dynamic relations we obtain positivity of θ p and E. Putting it all together, we conclude:
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Theorem 4.12. Consider initial data in HN+1,N > 2
3
, for the relativistic Euler equations with an

equation of state such that s, h, θ, n, E, p |t=0 > 0, and such that 0 < cs |t=0 ≤ 1. Assume also that
|u|2g = −1 at t = 0. Thus, there exists a unique classical solution to the relativistic Euler equations
defined for time interval.

Remark 4.13. We have written the relativistic Euler equations in a way that made its character-
istics explicit and allowed us to prove existence and uniqueness. But the way we wrote them is not
yet good for further applications, and we will present another form of writing the equations later
on.

5. The Einstein-Euler system

We will now consider the relativistic Euler equations coupled to Einstein’s equations

5.1. Curvature. We begin with some definitions needed to define Einstein’s equations.

Definition 5.1. The Riemann curvature tensor of a metric g is the four-tensor (a (1,3) tensor)
given in a system of coordinates by

Rαβ
γ
δ = ∂αΓγβδ − ∂βΓγαδ + ΓγαµΓµβδ − ΓγβµΓµαδ

where the Γ’s are the Christoffel symbols.
The Ricci curvature tensor is the following two tensor given as a trace of the Riemann tensor.

Rαβ = gµvRµαvβ = Rµα
µ
β.

The scalar curvature is the trace of the Ricci tensor:

R = gαβRαβ = Rα
α.

These expressions are well-defined in that they do not depend on the coordinates used.
Once again, those definitions seem ad hoc, and it is not clear what the above expressions have to

do with what we intuitively expect as “curvature.” This last concern is at least partially clarified
by the following proposition:

Theorem 5.2. (i)If Rαβ
γ
δ vanishes on an open set U , then on U the metric g is isometric to the

Minkowski metric, i.e., g is the Minkowski metric on U , but not necessarily written w.r.t. standard
rectangular coordinates.

(ii)Rαβ
γ
δ measures the failure of the covariant derivatives to commute in the sense that

∇α∇βX
γ −∇β∇αX

γ = Rαβ
γ
δX

δ,

for any vector field X

Remark 5.3. In Riemannian geometry, (i) holds with Minkowski replaced by Euclidean.
Since intuitively the Miskowski space is the canonical flat (i.e., non-curved) space, (i) shows a

connection between our intuition of curvature and the Riemann tensor. As for (ii), we can imagine
that measuring the rate of change of a quality along different “paths” ( first the xα direction and
then in the xβ direction, and vice-versa) can lead to different results if such paths travel regions of
space that are differently curved.

Proposition 5.4. (i) The Ricci tensor is symmetric, i.e., Rαβ = Rβα.
(ii) The following identity holds:

∇α

(
Rα
β −

1

2
Rgαβ

)
= 0.
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Proof. (i) follows by exploring certain symmetries of Rαβ
γ
δ that follow from its definition, e.g.

Rαβ
γ
δ = −Rβα

γ
δ (which in particular imply that not all components of the Riemann tensor are in-

dependent; in fact, there are 20 independent components). (ii) follows from some further symmetries
for covariant derivatives of the Riemann tensor (known as Bianchi identities). �

5.2. Einstein’s equation.

Definition 5.5. Given an energy-momentum tensor Tαβ, Einstein’s equations are defined as

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ,

where Λ is a constant known as cosmological constant. If Tαβ = 0, then we have the vacuum
Einstein equations

Rαβ −
1

2
Rgαβ + Λgαβ = 0.

Remark 5.6. Students should not be misled by the word “vacuum”, which may suggest that
spacetime is somewhat trivial, that “nothing is happening.” This is definitely not the case, as one
could imagine from how complicated Rαβ and R are. Solutions to vacuum Einstein’s equations can
be quite complex and even develop singularities. In fact, some of the best known explicit solutions
to Einstein’s equations, like Schwarzschild and the Kerr solution, are solutions to vacuum Einstein’s
equations (with Λ = 0). Moreover, Christodovler proved [7] that singularities can form on solutions
to vacuum Einstein’s equations by the focusing of gravitational waves. (This does make sense
physically: gravitational waves carry energy, so focusing them into a small region of spacetime can
create a black hole.)

Remark 5.7. Here we are interested in the case where Tαβ is the energy-momentum tensor for a
perfect fluid, but our initial discussion applies as well to other theories (i.e. other energy-momentum
tensors), so we will keep it general for now.

Notation 5.8. The energy momentum tensor involves variables that depend on the particular
theory we are studying. In the case of relativistic Euler, as seen, then variables are, beside g that
already appears on the LHS of Einstein’s equations, u, %, and p. But if we take, say, Tαβ to be the
energy-momentum of electromagnetism, then the variables in Tαβ will be the electric and magnetic
field Em and Bm. In order to keep the discussion general, we will denote symbolically, all the
variables in Tαβ besides the metric g by ψ, and sometimes write Tαβ(ψ) to indicate this. These
variables are called the matter fields. We remark that “matter” means anything that is not gravity
(i.e., all variables in Tαβ except the metric). Thus, for example, if we have the electric and magnetic
fields we call them “matter fields” even though physically we think of the electro-magnetic field in
terms of radiation rather than matter.

As a consequence of the Bianchi identities we have (see proposition above) we have

∇α(Rα
β −

1

2
Rgαβ + Λgαβ ) = 0,

thus ∇αT
α
β = 0 is a necessary condition for the existence of a solution to Einstein’s equations. In

particular, the equation of motion for the matter fields are ∇αT
α
β = 0. (This also gives another

motivation for why the relativistic Euler equations are ∇αT
α
β = 0.)
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5.3. The Cauchy problem for Einstein’s equations. We will now discuss the Cauchy problem,
roughly stated as (see below for a precise statement): given g and ψ initially, can we find g, ψ solving
Einstein’s equations and taking the initial data?

Suppose we have solution to Einstein’s equations and consider coordinates {xα}3
α=0. Assume

that initial data was given along Σ = {x0 = t = 0}, and let N be unit future-directed (i.e. pointing
toward t > 0) unit normal to Σ. Then using the expression for Rαβ and R in coordinates we find
that

(Rαβ −
1

2
Rgαβ + Λgαβ )Nα

involves no term with two derivatives of g w.r.t ∂t. (This can be seen more easily in coordinates
such that g00 = −1, g0α = 0, N = (1, 0, 0, 0).) Since the initial data involves prescribing g and ∂tg
on Σ (since Einstein’s equation are second order on g), we see that the initial data is constrained,
i.e., it cannot be prescribed arbitrarily but it has to satisfy

(Rαβ −
1

2
Rgαβ + Λgαβ)Nα = TαβN

α on Σ

The existence of such constraints can be understood geometrically. If we have a solution to
Einstein’s equations and Σ is a hypersurface embedded in spacetime where initial data is given,
then the induced metric on Σ (which agrees by assumption with the metric given as data) cannot
be arbitrary but has to satisfy certain relations known as the Gauss-Codazzi equations. These
equations also involves the second fundamental form of embedded in the spacetime. (Roughly, the
second fundamental form relates the intrinsic geometry of Σ with that of the spacetime where it
embeds.)

We also note that since Σ is three-dimensional, the initial metric given on Σ should be a metric
on a three dimensional space, i.e., gij with nine components rather than gαβ with 16 components.
On the other hand, we do want to solve Einstein’s equations for the full spacetime metric (i.e., gαβ
with 16 components.)

In view of our signature convention -+++, the metric given initially on Σ is Riemannian.
These considerations lead to the following definitions.

Definition 5.9. An initial data set for Einstein’s equation consists of a three-dimensional manifold
Σ, a Riemannian metric g̊ on Σ, a symmetric two-tensor k̊ on Σ, initial data ψ̊ for the matter fields,
such that the Einstein’s constraint equations, given by

Rg̊ − |̊k|2g̊ − (tr̊gk̊)2 = 2%̊

∇g̊tr̊gk̊ − div g̊k̊ = j̊

are satisfied on Σ. Above, Rg̊,∇g̊, tr̊g, div g̊ and | · |̊g are respectively the scalar curvature, covariant

derivative, trace, divergence, and norm of the metric g̊. The quantities %̊ and j̊ are, respectively,
a function an one-form on Σ with the property that T (N,N) = %̊ and T (N, ·) = j̊(where T is the
energy momentum tensor) whenever Σ embeds, with second fundamental form k, into a spacetime
where Einstein’s equations are satisfied.

The constraint equations are the relations needed to be satisfied by the initial data, as discussed
above. The tensor k̊ plays the role of ∂tg |t=0 : strictly speaking we cannot talk explicitly about
∂tg |t=0 since ∂t is a coordinate dependent operator. Moreover, ∂t would be transversal to Σ , but
it does not make sense talk about transversality to Σ before having Σ embedded into a spacetime.
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Definition 5.10. Solving Einstein’s equation with a given initial set I = (Σ, g̊, h̊, ψ̊) consists of
finding a four dimensional manifold M , a Lorentzian metric g, fields ψ, and an embedding i : Σ→
M , such that:

(i) Einstein’s equations with Tαβ(ψ) are satisfied in M .

(ii)i∗(g) = g̊, i∗(ψ) = ψ̊, where i∗ is the pull-back via i.

(iii) the second fundamental form of the embedding i : Σ→M equals k̊.
Taking the trace of Einstein’s equations and using that gαβgαβ = 4 we find

−R + 4Λ = gαβTαβ.

using this expression to substitute for R, we see that we can write Einstein’s equations as

Rαβ = Tαβ −
1

2
gµνTµνgαβ + Λgαβ,

which is more convenient for our purposes.
We will construct solutions to Einstein’s equations for a given initial data set. We will consider

Tαβ for simplicity, as the ideas we will present apply to the case Tαβ 6= 0 as well. We henceforth
assume an initial data set to be given

Embed Σ into R × Σ and fix p ∈ Σ. We will initially construct a solution in a neighborhood
of p. Consider coordinates {yα}3

α=0 defined as an open set about p, with {yi}3
i=1 coordinates on

Σ ∩ U = {y0 = 0}. Assume that p corresponds to coordinates (0,0,0,0). In these coordinates, the
Ricci tensor reads (using the formula for Rαβ):

Rαβ =
1

2
gµν(∂µ∂νgαβ + ∂α∂βgµν − ∂α∂µgβν − ∂β∂µgαν) + Fαβ(g, ∂g),

where Fαβ(g, ∂g) represents terms involving at most one derivative of g. We think of Rαβ as a second
order differential operator on g given by the above expression, and we want to solve Rαβ = 0. Thus
we need to understand the operator Rαβ, so we look at its principal symbol: linearizing Rαβ in the
direction of a symmetric two tensor we find

σ(Ricci)(h) =
1

2
gµν(ξµξνhαβ + ξαξβhµν − ξαξβhβν − ξβξµhαν).

Thus, if we take hαβ = ξαξβ we find σ(Ricci)(h) = 0 with h 6= 0 . Therefore, every direction is
characteristic for the Ricci operator, and we cannot solve Rαβ = 0 with Rαβ given by the above
expressions. (Note: exactly the same issue happens when one studies Ricci flow.) This degeneracy is
of geometric character: it is a consequence of the fact that Rαβ is invariant under diffeomorphisms:
Ricci(g) = Ricci(ϕ∗(g)) for diffeomorphism ϕ . In other words, Einstein’s equations turn out to an
underdetermined system of PDEs.

We can remove the degeneracy of Rαβ by choosing suitable coordinates, as follows. Define function
x(0), x(1), x(2) and x(3) by solving the following initial value problem in U : (we write (α) to indicate
that the index in x(α) is simply a label for these four function, it is not meant to be a tensor index),
where we take to be functions of (y0, y1, y2, y3) :

�gx
(i) = 0 in U,

x(i)(0, y1y2y3) = yi,

∂

∂yo
x(i)(0, y1y2y3) = 0.
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for i = 1, 2, 3 and

�gx
(0) = 0 in U,

x(0)(0, y1y2y3) = 0,

∂

∂yo
x(0)(0, y1y2y3) = 1,

where we recall that �g is the wave operator applied to a scalar function. Since the functions x(α)

agree with the coordinate functions yα on Σ ∩ U , we conclude that the x(α) give rise to a system
of coordinates on U(possibly shrinking U if needed), thus we write x(α) = xα, and now {xα}3

α=0 is
a coordinate system about p. On the other hand, �gx(α) = �gxα is coordinate independent, so we

also have �gxα = 0 when �g is expressed relative to the coordinates {xα}3
α=0, thus we have (using

one of the expressions for �g):

�gx
α = gµν(x)

∂

∂xµ
∂

∂xν
xα − gµν(x)Γλµν(x)

∂

∂xλ
xα = 0,

where we write gµν(x) and Γλµν(x) to emphasize that these are the metric and Christoffel symbol

expressed relative to {xα}3
α=0 coordinates. But ∂

∂xλ
xα = δαλ and ∂

∂xµ
∂
∂xν

xα = 0, so we conclude

Γα = 0

where Γα = gµνΓλµν .

Definition 5.11. The coordinates {xα}3
α=0, where Γα = 0, are called wave coordinates.

We stress that, by construction, wave coordinates depend on the metric g.
It can be showed that relative to wave coordinate,

gµν(∂α∂βgµν − ∂α∂µgβν − ∂β∂µgαν) = 0

so that Rαβ = 0 reduces to

Rαβ = −1

2
gµν∂µ∂νgαβ + Fαβ(g, ∂g) = 0.

This is a system of quasi-linear equations which can be solved by standard techniques (see the
rough notes on non-linear wave equations). However, the problem is that we are trying to prove
existence of g, whereas wave coordinates required g to be given. To overcome this problem, we will do
the following. We solve the equation that we know how to solve, i.e., −1

2
gµν∂µ∂νgαβ+Fαβ(g, ∂g) = 0.

Then, we try to show that this solution in fact solves Einstein’s equations. Thus, it is convenient
to introduce:

Definition 5.12. The reduced Ricci tensor of g is

RH
αβ = −1

2
gµν∂µ∂νgαβ + Fαβ(g, ∂g),

defined in U . The reduced Einstein equations are

RH
αβ = 0 in U

We thus consider RH
αβ = 0 in U . Let us now provide initial conditions for this equation. Recall

that the initial data is given on Σ ∩ U = {y0 = t = 0} .
Since we are given g̊ on Σ, we have gij (0) = g̊ij. We need to prescribe g0α(0), and we choose

g00(0) = −1, g0i(0) = 0. We also need to prescribe ∂tgαβ(0). In suitable coordinates the second
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fundamental form is given by kij = 1
2
∂tgij, so we prescribe ∂tgij(0) = 2̊kij. It remains to prescribe

∂tg0α(0). It can be verified that, combined with the choices we made so far, we can choose ∂tg0α

such that our coordinates {yα}3
α=0 are wave coordinates on Σ∩U , i.e., we can choose ∂tg0α so that

Γα(0) = Γα |Σ∩ 0 = 0.

Having prescribed initial data, we now obtain a solution gαβ to RH
αβ = 0 in U , possibly after

shrinking u. By continuity, Σ ∩ U is in fact a Lorentzian metric in U .
Now we want to show that g is a solution to Einstein’s equation, i.e., its Ricci tensor satisfies

Rαβ = 0. This will be the case if Γα = 0 in U , since in this case the coordinates {yα}3
α=0 will in

fact be wave coordinates for the metric g we found, in which case Rαβ = RH
αβ and then Rαβ = 0.

We have that Γα = 0 on Σ ∩ U , so we have to prove that the vanishing of Γα on Σ ∩ U can be
propagated to U .

Since g is a Lorentzian metric, its Riemann tensor satisfies the Bianchi identities, which imply,
after some calculation:

�gΓ
α +H(Γ, ∂Γ) = 0 in U

where H(Γ, ∂Γ) represent terms involving at most one derivative of Γ. This is a homogeneous
system of wave equations for Γα , for which one of the initial conditions is Γα(0) = 0. Uniqueness
for wave equations gives that

Γα = 0 in U if ∂tΓ
α(0) = ∂tΓ

α |Σ∩U = 0.

We now invoke the following fact (see [5]):

Theorem 5.13. ∂tΓ
α(0) = 0 if and only if the constraint equations are satisfied.

Since in an initial data set the constraints are satisfied by assumption, we finally conclude that
we have found a metric g in U such that Rαβ = 0 in U .

It remains to obtain a solution global in space, i.e., valid in a neighborhood of Σ in R × Σ.
This can be done by using the domain of dependence property of the wave operator gµν∂µ∂ν and
uniqueness for wave equations to give solutions constructed in different open sets U , U ′:

U
p p′

U ′

Uniqueness

Caution: although the argument for gluing these solutions is not complicated, it is not as
straightforward as the above picture may suggest, as we need to construct a system of coordinates
valid on the intersection region in order to compare the two solutions from U and U ′.

This beautiful result on existence of solutions to vacuum Einstein’s equations was first proved
by Choquet-Bruhat in 1952 [12], a result that can be considered the birth of mathematical general
relativity (although Einstein himself did not seem to be impressed, see [Pa] p.291).
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It is not difficult to see that plain uniqueness fails for Rαβ = 0. Let M = (−ε, ε) × Σ be a
spacetime constructed as above, and ϕ : M → M be a diffeomorphism that is not the identity but
agrees with the identity in a neighborhood of Σ. Then the metrics g and ϕ∗(g) are two different
metrics in M , but both inducing the same initial data on Σ, and both solving Einstein’s equations
since Ricci(g) = Ricci(ϕ∗(g)). (This does not contradict the uniqueness needed for the above gluing
argument since there we are talking about uniqueness in wave coordinates, i.e., for the operator
gµν∂µ∂ν).

The problem with the above example is that the metrics g and ϕ∗(g) are isometric. Thus, the
manifolds (M, g) and (M,ϕ∗(g)) should not be distinguished in the category of Lorentzian manifolds.
Thus, if we consider equivalence classes of manifolds, i.e., up to isometry, (M, g) and (M,ϕ∗(g)) are
the same. Nevertheless, we can still produce non-uniqueness by consider a proper subset M ′ ⊂ M
that contains Σ, since (M ′, g) and (M, g) are not isometric.

It is possible to construct, however, the “largest” spacetime that solves Einstein’s equations with
the given initial data, called the maximal globally hyperbolic of the initial data, and this manifold
is unique.

We can now investigate the Einstein Euler system. The above arguments depend essentially on
properties of the Ricci tensor and geometric considerations, and it is not difficult to see that they
apply to the case with matter as well, provided we can solve the coupled system in U . In the case of
the Einstein-Euler system, we only need to add Einstein’s equations to the system we have already
derived for the relativistic Euler equations. We obtain:

−1

2
gµν∂µ∂νδαβ = Bαβ(∂g, w, s)

wα∂αs = 0,

wµ∂µΩαβ = Bαβ(∂g, ∂w, ∂s,Ω),[
c2
sg
αβ − (1− c2

s)
wαwβ√
−wαwα

]
wγ∂α∂β∂γwδ = Bδ(∂

3g, ∂2w, ∂2s, ∂Ω),

where we now write z = c2
s. we can do energy estimates as before to find:

‖g‖N+α . ‖g(0)‖N+α +

t∫
0

B(‖g‖N+2, ‖w‖N+1, ‖s‖N+1),

‖s‖N+1 . ‖s(0)‖N+1 +

t∫
0

B(‖w‖N+1, ‖s‖N+1),

‖Ω‖N . ‖Ω(0‖N +

t∫
0

B(‖g‖N+1, ‖w‖N+1, ‖s‖N+1, ‖Ω‖N),

‖w‖N+1 . ‖w(0)‖N+1 +

t∫
0

B(‖g‖N+2, ‖w‖N+1, ‖s‖N+1, ‖Ω‖N),

and once again we observe that these estimates close, leading to existence of solutions. We leave
the formulation of a precise statement of existence (and uniqueness in the above sense) to students
(or see, e.g., [10]).
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Remark 5.14. Because of the undetermined of Einstein’s equations, we had a great deal of freedom
in choosing our coordinates and initial data for the spacetime metric. This freedom, which was
crucial to obtain solution, is known in the physics literature as gauge freedom.

Remark 5.15. The characteristics of the Einstein-Euler system are the same as the relativistic
Euler equations plus the characteristics coming from Einstein’s equations, namely, gαβξαξβ, which
correspond to gravitational waves.

5.4. Initial data. We have not so far address the question of whether initial data sets do exist,
i.e., whether it is possible to find initial data satisfying the constraints. This is a research problem
in itself: we need to solve the constraint equations for g̊ and k̊. When appropriate formulated, the
constraint equations turn out to be an elliptic system for g̊ and k̊, and the topology of Σ plays a
role on whether or not this elliptic system admits solutions which in many situations of interest it
does, this is not always the case. See [8].

6. New formulation of the relativistic Euler equations

The equations we derived in order to obtain local existence and uniqueness for the relativistic
Euler equations involve operators that make the role of the characteristics manifest. Nevertheless,
such equations are not yet good enough for more refined applications, such as the study of shock
formation in the relativistic Euler equations. Here, we will present yet another way of writing the
relativistic Euler equations. As we will explain, this new formulation of the equations exhibit several
remarkable features, making it ameneable to certain applications in a way that other formulations
are not.

6.1. Auxiliary quantities. We continue to use the same notation as before for the relativistic
Euler equations, and here we introduce several new quantities that will be useful in what follows.
Throughout, we denote by εαβγδ the totally antysymetric symbol nonanalized by ε0123 = 1.

Assumption 6.1. For simplicity, in our new formulation of the relativistic Euler equations we
will assume that the spacetime metric is the Minskowshi metric. The coordinates {xα}α=0 will be
standard rectangular coordinates.

Recall that cs is the fluid’s sound speed.

Definition 6.2. We introduce:
The (dimensionless) log-enthalpy:

ĥ = log(h
/
h),

where h is some fixed reference constant value.
The u-orthogonal vorticity of a one-form :

vortα(V ) = −εαβγδuβ∂γVδ.
The u-orthogonal vorticity vectorfield

ϕα = vortα(hu).

The entropy gradient one-form:
Sα = ∂αs.

The modified vorticity of the vorticity:

Cα = vortα(ϕ) + c−2
s εαβγδuβ∂βĥϕδ + (θ − ∂θ

∂ĥ
)Sα∂λu

λ + (θ − ∂θ

∂ĥ
)uαSλ∂λĥ+ (θ − ∂θ

∂ĥ
)Sλgαβ∂λuβ
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The modified divergence of the entropy gradient:

D =
1

n
∂λS

λ +
1

n
Sλ∂λĥ−

1

n
c−2
s Sλ∂λĥ.

The modified quantities Cα and D come about because of the following. In the applications
we will discuss, we need to estimate vort(ϕ) and ∂λS

λ, but a good estimate is not available for
these quantities. However, adding the right combination of variables to root and ∂λS

λ, we obtain
quantities (Cα and D) that satisfy equations with a good structure for which estimates can be
derived.

The n-orthogonal vorticity ϕ is related to Ω by duality: ϕα = 2uβ(∗Ω)µν , where ∗Ω is the Hode
dual of Ω, given by (∗Ω)αβ = 1

2
εαβµνΩ

µν . The role of ϕ is to provide the vorticity “as a vector”
rather than as a two form, as in the classified case.

Assumption 6.3. In the previous definition, as well as in the ensuing discussion of the new for-

mulation of the relativistic Euler equations, it is assumed that ĥ and s are the fundamental ther-

modynamic variables, with h, n, θ, %, E, and p being functions of ĥ and s. We also assume our

constructions to be such that 0 < cs = cs(ĥ, s) ≤ 1.

Definition 6.4. For 0 < cs ≤ 1, the acoustical metric is defined by Gαβ = c−2
s gαβ + (1− c−2

s )uαuβ,
whose inverse is Gαβ = c2

sg
αβ − (1− c2

s)u
αuβ.

The characteristics associated with G are called sound cones.

Remark 6.5. We have already seen thatGαβ is in fact a Lorentzian metric (provided that |u|2g = −1,
which is the case).

Definition 6.6. The null-forms relative to G are the following quadratic forms:

Q(G)(ϕ, ψ) = Gαβ∂αϕ∂βψ,

Qαβ(ϕ, ψ) = ∂αϕ∂βψ − ∂βϕ∂αψ.
The use of null-forms has a long history in hyperbolic PDEs and we will highlighted their properties
below.

6.2. The new formulation. We can now state the new formulation of the relativistic Euler equa-
tions. As the actual statement of the new formulation is quite long, we will give only a schematic
statement. We will use ' to denote “up to harmless terms,” where harmless have means from the
point of view of the applications we discuss further below.

Theorem 6.7. Assume that (ĥ, s, u) is a C3 solution to the relativistic Euler equations. Then,

(ĥ, s, u) also verify the following system of equations: Wave equations:

�Gĥ ' D +Q(∂ĥ, ∂u) + L(∂ĥ),

�Gu
α ' Cα +Q(∂ĥ, ∂u) + L(∂ĥ, ∂u),

�Gs ' D + L(∂ĥ),

Transport equations:

uλ∂λs = 0,

uλ∂λS
α ' L(∂u),

uλ∂λϕ
α ' L(∂ĥ, ∂u).
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Transport-div-curl equations:

uλ∂λD ' C +Q(∂S, ∂ĥ, ∂ω) + L(∂h, ∂u),

vortα(S) = 0,

∂λϕ
λ ' L(∂ĥ),

uλ∂λC
α ' C +D +Q(∂S, ∂ϕ, ∂ĥ, ∂u) + L(∂S, ∂ϕ, ∂ĥ, ∂u).

Above, L(∂f1, · · · , ∂fm) denotes linear combinations of terms that are at most linear in ∂f , whereas
Q(∂f1, · · · , ∂fm) denotes linear combinations of the null forms relative to G. �G is the wave oper-
ator w.r.t. G, and in �Guα the wave operator acts on uα treated as a scalar function.

Proof. See [21]. �
One new result we can prove using the new formulation is that the entropy and n-orthogonal

vorticity can be proven to one degree more regular than what is given by standard theory:

Theorem 6.8. The relativistic Euler equations are locally well-posed (i.e., existence, uniqueness,
and continues dependence on the data) with (h, s, u, ϕ) ∈ HN ×HN+1 ×HN ×HN , N > 3

2
+ 1.

Proof. Proof: see [21]. �
Standard theory (e.g. symmetric hyperbolic systems or the mixed order formulation we derived

earlier) gives only (h, s, u, ϕ) ∈ HN ×HN ×HN ×HN−1.

Remark 6.9. The above theorem assumes that the initial data enjoys the extra regularity s(0) ∈
HN+1 and ϕ(0) ∈ HN (otherwise the result cannot be true since there is no smoothing in time for
hyperbolic equations). The point is that standard theory gives s ∈ HN and ϕ ∈ HN−1 even if such
extra regularity for the data.

The above extra regularity ultimately comes from the div-curl part of the system. We point out,
however, that this is not immediate as it may sound, since the div-curl system is for the spacetime
div and curl, from which we need to extend three-dimensional regularity.

The extra regularity is an interesting result in itself, but it is in fact one of the important
ingredients in the study of shocks in relativistic Euler, which we discuss next.

6.3. The study of shock formulation. Roughly, a shock wave, or shock for short, is a region in
spacetime for which the solution remains bounded but one of its derivatives blows up.

While it is known that shocks can form for the relativistic Euler equations (see, e.g., [14]) for
smooth initial data, we are interested in the problem of constructive proofs of stable formulation
without symmetric assumptions in more than one spatial dimension, henceforth referred to simply
as the problem of shock formulation, by which we mean:

Shocks form for an open set B of (small) initial data (usually perturbation of constant solutions).
(Stability.)

contains “arbitrary” initial data, i.e., not restricted to a symmetry class
Proofs are constructive, so that we can get a precise description of the shock profile. (Needed for

continuing the solution past the shock in a weak sense)
The framework needed to establish proofs of shock formulation involves the following ingredients:
Ingredient one: nonlinear geometric options. This is done by introducing an eihonel function U ,

which is a solution to the eihonal equation

Gαβ∂αU∂βU = 0,

with appropriate initial condition. The eihonal function plays two crucial roles.
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First, the level sets of U are the characteristics associated with the metric G, which are the
sound cones. In this regard, we note that U is adapted to the wave part of the system and not
to the transport part. This choice is based on the fact that the transport part corresponds to the
evolution of the vorticity and entropy, and there are no kown blow-up results for these quantities.
On the other hand, the only known mechanism of blow-up for relativistic Euler is the intersection
of the sound cones. In particular, this shows the importance, in the context of shock formulation,
of not treating the transport and sound part of the system together, as it is done in the first order
symmetric hyperbolic formalism. The intersection of the sound cones is measured by the inverse
foliation density µ defined as

µ = − 1

Gαβ∂αt∂βU
,

which has the property that µ→ 0 corresponds to the intersection of the characteristics.
Second, in order to detect the blow up, we need to identify precisely in which direction(s) the

solution blows up, and which direction it remains bounded. This is done with the introduction of
a null-frame

{e1, e2, L, L}
adopted to the sound cones. Here, L and L are null vectors, with respect to G, satisfying G(L,L) =
−2, and {e1, e2} is an orthonormal, with respect to G, frame on the (topological) spheres given by
the intersections

{t = constant} ∩ {U = constant} .
We also have that G(eA, L) = 0 = G(eA, L), A = 1, 2.

t

xi

U = constant

L

`A

L

t = constant

We can decompose quantities w.r.t. this null frame, and identify that blow-up occurs in the
L direction, while derivatives of the fluid variables in the other directions remain bounded. To
carry out the analysis, we also introduce a geometric system of coordinates adapted to the sound
characteristics, {

t, U, v1, v2
}
,

where vA, A = 1, 2, are coordinates on the spheres {t = constant} ∩ {U = constant}(they are con-
structed open solving Gαβ∂αU∂βv

A = 0 with appropriate initial conditions0.
Ingredient two: nonlinear null-structure. The basic philosophy for the proof of shock formation

is to show that, relative to the geometric coordinates {t, U, v1, v2}, the solution remains bounded
all way to the shock. In this way, we transform the problem of shock formation into a more
traditional one, where the goal is to derive long-time estimates for the solution (relative to the
geometric coordinates). The blow-up of the solution w.r.t. the original coordinates is recovered
by showing that the geometric coordinate system degenerates (in a precise fashion) relative to the
original coordinates (since the characteristics are intersecting at the shock, we expect the geometric
coordinates to degenerate there).
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A crucial aspect of these constructions is that the null-frame and the geometric coordinates
depend on the fluid’s solution variables, since they (the null frame and the geometric coordinates)
are constructed out of U which depends on G. (in broad philosophical terms, this resembles the
approach to Einstein’s equations, where the wave coordinates depend on the solution, i.e., on the
spacetime metric). Therefore, in order to implement these ideas we have to show that the geometric
coordinates remain regular all way up to the shocks. And to do so we need to obtain precise estimates
for the fluid variables, showing, in particular, that the derivatives tangent to the sound cone do
not produce singularities, the latter coming from derivatives in the L direction, as mentioned. In
practice, this is done by showing that the dynamic can be decomposed into a Riccati-type term
that drives the blow-up (recall that the Riccati ODE is dz

dt
= z2, which blows up in finites time) and

error terms that do not significantly alter the high-frequency behavior of the Riccati term. Such

terms appear as follows (we will illustrate with ĥ, similar statements hold for uα). Expanding the

covariant wave operator to the null frame we find that the equation for ĥ reads, schematically,

L(Lĥ) ' −(Lĥ)2 +Q,

where Q denotes linear combination of null forms relative to G (and we omit harmless terms, e.g.,

terms linear in derivatives). The equation L(Lĥ) ' −(Lĥ)2 is the Riccati equation for the variable

Lĥ, since L is differentiation in the direction of L, thus L = d
dτ

for a suitable parametrization of
the flow lines of L. Thus, we need to show that Q is a perturbation that does not significantly
alter the Riccati behavior. This is problematic because Riccati forms are generally unstable under
perturbations. However, and here is where the role of null-forms is important, Riccati terms are
stable upon perturbations by null forms.Relative to the null-frame, we have

Q(∂ϕ, ∂ψ) = τ(ϕ)ψ + τ(ψ)∂ϕ,

where τ is differentiation tangent to the sound cones. This implies that even though Q is quadratic,
it never involves terms quadratic in the direction the system wants to blow-up. Specifically, in our
case, we then have

L(Lĥ) ' −(Lĥ)2 + τ(ĥ)∂h

so that the first term on the RHS is the only term quadratic in L1ĥ. If instead of τ(ĥ) we had ∂ĥ

then we would get a (∂ĥ)2 term. After decomposing in a null frame, this (∂ĥ)2 could produce a

(Lĥ)2 that cancels or nearly cancels the −(Lĥ)2 term from the Riccati part, thus working against

the blow-up and preventing us from proving that shocks form. The term τ(ĥ)∂ĥ, on the other hand,

is at most linear in Lĥ so that

L(Lĥ) = −(Lĥ)2 + τ(ĥ)Lĥ.

Since the tangential derivatives remain bounded, the first term on the RHS dominates over the last

term, leading to the blow-up of Lĥ.

Remark 6.10. A straw man ODE analogy of the above is the following. Consider the two following
perturbations of the Riccati ODE dz

dt
= z2 : dz

dt
= z2 + εz, dz

dt
= z2 ± εz3, z(0) > 0, ε > 0 small. The

first equation still blows up and it does it at the same rate as the original one. For the second
perturbation, depending on the sign ± the solution will either exist for all time or it will blow up at
an entirely different rate (thus effectively altering the blow-up). The null-forms are the PDE analog
of the εy perturbation.

Ingredient three: energy estimates and regularity. The previous arguments assume that we can in
fact close estimates establishing several elements needed in the above discussion (e.g. that tangential
derivatives do in fact remain bounded). Thus, we need to derive estimates not only for the fluid
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variables but also for the eihonal function (since the regularity of the null-frame is tied to that of
U ).

Energy estimates for the fluid variables are obtained by commuting the equations with derivatives,
but in order to avoid generating uncontrollable source terms, we need to commute the equations
with certain vector fields that are adapted to the sound characteristics. This leads to vector fields

of the form z ∼ ∂U · ∂. Commuting through, e.g., the equation for ĥ:

z(�gĥ) ∼ �g(zĥ) + (�g∂U)∂ĥ

∼ �g(zĥ) + ∂3U · ∂ĥ.

so the equation for ĥ gives

�g(zĥ) ∼ ∂3U · ∂ĥ+ · · ·
Since U solves a (fully non-linear) transport equation, standard regularity theory for transport

equations gives that U is only as regular as the coefficients of the equation, which in this case is

G, and since G = G(ĥ, s, uα), we find ∂3U ∼ ∂3G ∼ ∂3ĥ+ · · · On the other hand, standard energy

estimates for wave equations give that form �g(zĥ) we obtain control of ∂(zĥ) ∼ ∂2ĥ, so in the end

we are trying to control ∂2ĥ in terms of ∂3ĥ and thus have a derivative loss.
It turns out that we can overcome the regularity loss by exploiting some delicate tensorial prop-

erties of the eihonal equation and of the wave equation relative to geometric coordinates. Together
these properties can be used to show that certain geometric tensors constructed out of U enjoy extra
regularity in directions tangent to the sound cones. Carefully accounting for the precise structure
of the aforementioned ∂2U∂h term we can show that it is precisely one of such terms with extra
regularity. It turns out that all terms seem to exhibit loss of regularity are of this form and can
thus be controlled.

The special structures mentioned above that are used to prevent loss of regularity of the eihonal
function are tied to the geometry of the sound cones. The improved estimates, without regularity
loss, for U are not based directly on the eihonal equation, but rather on evolution equations for
geometric quantities (the null second foundamental form, mean curvature, etc.) of the sound cones.

To close the estimates we also need to use the extra regularity that we obtained for s and ϕ to
close the estimates. To see this, let us do a näıve derivative counting. From the equation for uα we
have �gu ∼ C, so we can control ∂u . C. But C ∼ vortα(ϕ) ∼ ∂ω. From the transport equation
for ϕ, uλ∂λϕ ∼ ∂u, we can control ϕ ∼ ∂u, so in the end we are controlling ∂u∂2u, which has a loss
of a derivative. This loss of regularity can be avoided, however, by using the extra regularity for ϕ
mentioned earlier. Something similar happens with some estimates involving s.

Finally, we mentioned that the energy estimates that are needed are in fact weighted estimates,
where the weight is given by the inverse foliation density µ. Since µ → 0 at the shock, we end up
with energies that are singular at top order. This is a major technical point that involves a complex
bootstrap argument to close the estimates.

The above ingredients seem to be needed to establish proofs of shock formation, and are used in
all known such proofs (in n ≥ 2, see below). The crucial point for us here is that all such ingredients
are present in the new formulation of the relativistic Euler equations.

6.4. Some context for the work on shocks. The ingredients outlined above have not all being
introduced in [21]. They are the culmination of a series of beautiful ideas developed by a series of
authors. For the sake of time we will not review this history here, but we refer to the introduction
of CITATION HEREEEE.
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When the fluid is irrotational, the new equations reduce significantly and agree with those found
by Christodoulor [6] .The inclusion of vorticity causes several new difficulties and it is quite re-
markable that the vorticity case presents many of the good structures found (and needed) in the
irrotational case.

Finally, we mention that in one spatial dimension, the picture is compellingly simpler: in 1d
we can rely essentially on the method of characteristics. While this is essentially the same as
introducing an eihonal functional, in 1d we can dispense with all the geometric machinery discussed
above. Also, we do not need to carry out energy estimates. Instead, one uses estimates in BV
(bounded variation) spaces. It is possible to prove that such BV estimates do not generalize to two
or more spatial dimensions [19].

7. Relativistic fluids with viscosity

So far we only discussed perfect relativistic fluids. There are important applications in physics
where it is known that viscosity plays a key role. One such instance is in the study of the quark-
gluon-plasma, an exotic type of matter, modeled as a fluid, that forms in heavy-ion collisions (such
as those formed at the large Hadron Colliser). Another example is in the study of neutron star
mergers. These are very active fields of research and we refer to [[4],[20]] for more discussion.

What is striking about the study of relativistic viscous fluids is that it is not settled what the
convert equations are. There are several different models of relativistic viscous fluids in the litera-
ture. The abundance of models is due to the fact that, as it turns out, it is extremely difficult to
construct models of relativistic viscous fluids that incorporate relevant physics and are causal and
stable. (Causality is a fundamental postulate of relativity stating that no information propagates
faster than the speed of light. Stability here means mode stability of the linearized equations).

For the sake of time, we will not discuss here the difficulties in constructing models of relativistic
viscous fluids, nor will we review the several models available in the literature. We refer to [[3],[20]]
for such discussions.

The first theory of relativistic viscous fluids that was showed to be causal and stable and to have
a solution to the Cauchy problem coupled to Einstein’s equations is the theory introduced in [3]
(see [11] for the proofs).

Unfortunately, the model introduced in [3] is limited to conformal fluids for which, in particular,
the equation of state is always p = 1

3
%. Moreover, existence and uniqueness of solutions for this

model has been established only in Gevrey Spaces, which are too restrictive for applications such
as the numerical study of its equations.

Despite the existence of several different approaches to the problem, there exists one theory of
relativistic fluids, the Mueller-Israel-Stewart(MIS) theory [9] that is widely used in physics. This
is because the MIS has been used to construct successful models of the quark-gluon plasma. The
MIS equations have been showed to be stable and to respect causality at the linearized level.

For the study of neutron star mergers, one needs to couple the fluid equations with Einstein’s
equations. It is not known whether the MIS can also be used to study neutron star mergers. This is
because non-linearities are expected to play a major role in such mergers, and, as mentioned, only
the linearized MIS equations have been proven to be causal (but see below).

Moreover, only recently, using state-of-the-art numerical simulations [1], it has become clear that
viscous effects cannot be neglected in neutron star mergers. Interestingly, such simulations also
indicate that it is bulk viscosity, as oppose to shear viscosity, that plays a major role in the mergers
of neutron stars. It is sensible, therefore, to study the MIS equations with bulk viscosity and no
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shear viscosity, in which case the equations coupled to Einstein’s equations, become:

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ =

energy monenton tencor of a perfect flvid︷ ︸︸ ︷
(p+ %)uαuβ + pgαβ +Ππαβ.

∇α(nuα) = 0.

τuα∇αΠ + Π + λΠ2 + ζ∇αu
α = 0.

Above, Π is a new variable incorporating the dynamics of bulk viscosity (in the MIS theory the
viscous contributions are given by new variables, rather than by an expression in the velocity and
density as in the classical Navier-Stokes equations). The last equation is the equation of motion for
Π (since this new variable has been introduced, we need a new equation of motion as well), and τ
and λ are known function of % and u. It is also assumed that an equation of state p = p(%, u) is
given and that |u|2g = −1.

Theorem 7.1. Under mild and physically reasonable assumptions, the Cauchy problem for Ein-
stein’s equations coupled to the MIS equations (only with bulh viscosity, as above) can be solved for
initial data in Sobolev spaces. Moreover, the system is causal.

Proof. see [4] for a precise statement and its proof. �
These is much more to be said about relativistic viscous fluids. This brief discussion is intended

only as an illustration of the following fact: the study of relativistic viscous fluids is a very active area
of research in physics. However, very little is known about the mathematical properties of models
of relativistic fluids with viscosity and a great deal of basic, physically relevant, and important
mathematical questions remain open.
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