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A new approach is described to help improve the foundations of relativistic viscous fluid dynamics
and its coupling to general relativity. Focusing on neutral conformal fluids constructed solely in terms of
hydrodynamic variables, we derive the most general viscous energy-momentum tensor yielding
equations of motion of second order in the derivatives, which is shown to provide a novel type of
generalization of the relativistic Navier-Stokes equations for which causality holds. We show how this
energy-momentum tensor may be derived from conformal kinetic theory. We rigorously prove local
existence, uniqueness, and causality of solutions of this theory (in the full nonlinear regime) both in a
Minkowski background and also when the fluid is dynamically coupled to Einstein’s equations.
Linearized disturbances around equilibrium in Minkowski spacetime are stable in this causal theory.
A numerical study reveals the presence of an out-of-equilibrium hydrodynamic attractor for a rapidly
expanding fluid. Further properties are also studied, and a brief discussion of how this approach can be
generalized to nonconformal fluids is presented.
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I. INTRODUCTION

Relativistic fluid dynamics is an essential tool in high-
energy nuclear physics [1], cosmology [2], and astro-
physics [3]. For instance, it has been instrumental in the
discovery of the nearly perfect fluidity of the quark-gluon
plasma formed in ultrarelativistic heavy ion collisions [4]
and also in the modeling of complex phenomena involved
in binary neutron star mergers [5]. Its power stems directly
from the conservation laws and the presence of a hierarchy
among energy scales, which allows one to investigate the
regular macroscopic motions of the conserved quantities
without specifying the fate of the system’s microscopic
degrees of freedom (d.o.f.). Thus, it is widely accepted that
relativistic hydrodynamics may be formulated as an effec-
tive theory [6].
Absent other conserved currents, ideal relativistic fluid

dynamics is described by the equations of motion for the
flow velocity uμ (with uμuμ ¼ −1) and the energy density ϵ
obtained via the conservation law ∇μT

μν
ideal ¼ 0, where

T ideal
μν ¼ ϵuμuν þ PðϵÞΔμν is the energy-momentum tensor.

The pressure PðϵÞ is given by an equation of the state,
which is determined from the microscopic dynamics or
phenomenologically, gμν is the spacetime metric, and
Δμν ¼ gμν þ uμuν is the projector orthogonal to uμ. The
fluid equations of motion in this case are of first order in
spacetime derivatives and the initial value problem is well-
posed; i.e., given suitable initial data for ϵ and uμ, one can
prove that the system admits a unique solution (see below
for a precise definition and discussion of well-posedness).
This is true both in the case of a Minkowski background [7]
as well as when the fluid equations are dynamically
coupled to Einstein’s equations [8,9]. In both cases, the
solutions are causal; i.e., the field values at a point x in
spacetime are completely determined by the region in
spacetime that is in the past of and causally connected
to x (see a precise definition below). The physical meaning
of causality is that information cannot propagate at super-
luminal speeds.
As the concept of causality is central in this paper, here

we recall its precise definition. Let ðM; gÞ be a globally
hyperbolic Lorentzian manifold1 (both Minkowski
spacetime and spacetimes that arise as solutions to the
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1Global hyperbolicity forbids several pathologies that would
otherwise complicate our analysis.

PHYSICAL REVIEW D 98, 104064 (2018)

2470-0010=2018=98(10)=104064(26) 104064-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.104064&domain=pdf&date_stamp=2018-11-30
https://doi.org/10.1103/PhysRevD.98.104064
https://doi.org/10.1103/PhysRevD.98.104064
https://doi.org/10.1103/PhysRevD.98.104064
https://doi.org/10.1103/PhysRevD.98.104064


initial-value problem for Einstein’s equations are globally
hyperbolic, so this assumption covers most cases of
interest). Consider on M a system of (linear or nonlinear)
partial differential equations, which we write as PI

Kφ
K ¼ 0,

I; K ¼ 1;…; N, where fφKgNK¼1 are the unknowns. Let
Σ ⊂ M be a Cauchy surface where initial data are pre-
scribed. The system is causal if for any point x in the future
of Σ, φKðxÞ depends only on the initial data on J−ðxÞ ∩ Σ,
where J−ðxÞ is the causal past of x [10, page 620] [11,
Theorem 10.1.3] (see Fig. 1). In particular, causality
implies that φKðxÞ remains unchanged if the initial data
are altered2 only outside J−ðxÞ ∩ Σ.
Causality lies at the foundation of relativity theory, so

the matter sector in Einstein’s equations (i.e., the fluid)
must be compatible with this general principle. Hence, in
the regime where an effective hydrodynamic theory is
expected to provide an accurate description of the system’s
dynamics, such a theory must be causal, even in
Minkowski background, if it is to describe fully relativistic
phenomena.
To be more specific, in practice a given effective

theory description may be allowed to violate causality if
these violations lead only to unobservable phenomena
[12–16]. Such a scenario, however, poses undesirable

features. Firstly, one needs to have a precise and
quantitative understanding of causality violations in
order to trace its consequences and prove that they
are always unobservable. It is not clear how such a task
may be performed in hydrodynamics at the full nonlinear
level. Secondly, the property that causality violations are
unobservable might depend on particular modeling
choices, preventing one from drawing general conclu-
sions. Thus, the possibility of constructing a simple and
robust formalism that can be applied to the study of
relativistic viscous fluids is seriously hindered when
causality is lost. A safer and more straightforward path
is to devise effective theories that remain fully causal in
their regime of applicability.
Despite its importance in relativity theory, causality has

proven to be a difficult feature to accomplish in standard
theories of relativistic viscous hydrodynamics. The original
relativistic Navier-Stokes (NS) equations put forward by
Eckart [17] and Landau [18] decades ago have been shown
to be acausal both at the linearized [19] and nonlinear level
[20]. Currently, the most widely used theoretical frame-
work for the study of relativistic viscous fluids is due to
Israel and Stewart (IS) [21,22], together with the so-called
resummed Baier-Romatschke-Son-Starinets-Stephanov
(BRSSS) theory [6], and formulations derived from the
relativistic Boltzmann equation, such as the Denicol-
Niemi-Molnar-Rischke (DNMR) equations [23]. While
these theories have been instrumental in the construction
of models that provide us with great insight into the physics
of viscous relativistic fluids, causality has been established
in these theories only in the case of linear disturbances
around equilibrium and for certain values of the dynamic
variables [6,24]. These observations, added to the fact that
heat flow in IS theory is known to display acausal behavior
far from equilibrium [25], show that causality in IS-like
theories is a delicate matter. This leaves open the possibility
of causality violations (even near equilibrium) when the full
nonlinear dynamics is studied or a wide range of field
values is considered.
Furthermore, causality is not the only unsettled question

in IS, BRSSS, and DNMR theories. Questions regarding
the existence (and uniqueness) of solutions, including the
case when the fluid is dynamically coupled to gravity,3

remain open for these theories. We stress that this is not a
mere academic question. With the exception of simple
toy-model explicit solutions, the study of relativistic hydro-
dynamics relies widely on numerically solving the equa-
tions of motion.4 Without knowing that the equations of
motion admit unique solutions, the reliability of numerical

FIG. 1. Illustration of causality. In curved spacetime J−ðxÞ
looks like a distorted light cone opening to the past (blue region);
in flat spacetime the cone would be straight (dotted line). Points
inside J−ðxÞ can be joined to a point x in spacetime by a causal
past directed curve (e.g., the red line). The Cauchy surface Σ
supports the initial data, and the value of the field φðxÞ depends
only on the initial data on J−ðxÞ ∩ Σ.

2Causality can be equivalently stated in the following manner.
If fφK

0 gNK¼1 and fφ̃K
0 gNK¼1 are two sets of initial data for the

system such that φK
0 ¼ φ̃K

0 on a subset S ⊂ Σ, and φK and φ̃K are
the corresponding solutions to the equations, then φK ¼ φ̃K on
Dþ

g ðSÞ, where Dþ
g ðSÞ is the future domain of dependence of S

[11, Theorem 10.1.3].

3With the exception of highly symmetric situations such as
Friedmann-Robertson-Walker cosmologies [26].

4See [27] for a discussion of numerical approaches to
relativistic hydrodynamics and Refs. [28–42] for examples of
numerical simulations where Israel-Stewart-like equations of
motion were solved in the context of heavy-ion collisions.
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results may be, depending on the situation, called into
question.5,6In contrast, other areas of physics that also rely
heavily on numerical simulations, involving, for instance,
ideal relativistic hydrodynamics [3], typically deal with
equations (e.g., Einstein or the relativistic Euler equations)
for which the problem of existence of solutions is already
well understood. (We return to this, giving a more precise
definition of local existence and uniqueness and discussing
its relevance for this work, in Sec. I A.)
Moreover, not only is the ability of coupling a theory to

gravity essential from a foundational point of view (effec-
tive theories must allow interaction with gravity in their
regime of validity), but it is of course crucial for the study
of many astrophysical phenomena. This is equally true in
the case of viscous hydrodynamics, especially given
increasing awareness of the importance of dissipative
phenomena in the study of heavily dense atrophysical
objects such as neutron stars [3,44–47].
Further properties usually required in a fluid theory are

linear stability around equilibrium (in the sense of [19]) and
non-negative entropy production. For instance, IS, DNMR,
and the resummed BRSSS theory satisfy both of these

conditions. In contrast, the relativistic NS equations have
non-negative entropyproductionbut are linearly unstable [19].
Finally, it is also important to connect a given fluid

model with a microscopic approach. More precisely, we
would like to show that a given fluid model arises from a
microscopic description following some coarse graining
procedure. The reason to work with a fluid model is that
one cannot in practice solve the full microscopic dynamics.
But the physics is ultimately determined by the latter, and
the physical significance of a fluid model becomes fuzzy
absent a connection with this fundamental physical descrip-
tion. It is important to point out that the aforementioned
difficulties with theories of relativistic viscous fluids
(possible lack of causality or existence of solutions) are
not present in standard microscopic descriptions such as
kinetic theory based on the Boltzmann equation.7 We see,
therefore, that these pathologies are an artifact of a
particular coarse graining method. In fact, both the IS
and Landau’s theories are derivable from relativistic kinetic
theory using different methods [50], but their causality and
stability properties are drastically distinct.
To the best of our knowledge, this manuscript gives the

first example of a theory of viscous fluid dynamics
satisfying all of the above properties; i.e., the theory we
shall present is causal, local existence and uniqueness of its
solutions have been established (in the full nonlinear
regime) both in Minkowski background and when coupled
to Einstein’s equations, the theory is linearly stable,
derivable from microscopic theory, while also satisfying
the second law of thermodynamics, and at the same time
producing meaningful physical results in widely used test
models such as the Gubser and Bjorken flows.
In Minkowski background, our theory is determined by

four evolution equations of second order, which can be
rewritten as eight first order evolution equations. For com-
parison, conformal IS theory has nine equations of motion.
However, four of our eight equations are simple field
redefinitions used to recast the second order system as a
first order one and, in this sense, are trivial. From a computa-
tional point of view, the complexity of our theory is reduced to
four first order equations, hence simpler than IS.8

Here, we focus on conformal fluids because of their
simplicity and immediate relevance for applications in the
description of the quark-gluon plasma (see below).
However, our constructions can be generalized to non-
conformal relativistic fluids. We shall return to this point at
the end of this paper.
The discussion above focused on IS-like approaches

because of their wide use in the high energy nuclear physics

5Naturally, existence and uniqueness of solutions is not the
only criteria to judge the reliability of numerical simulations.
Issues of discretization, numerical stability, etc., are also
important.

6A thorough discussion of the potential risks of simulating
equations not known to be well-posed is beyond this paper. Here
we restrict ourselves to make a few remarks, referring to [43] and
references therein for further discussions. Consider the one-
dimensional eikonal equation ju0ðxÞj ¼ 1 on (0, 1) with boundary
conditions uð0Þ ¼ uð1Þ ¼ 0. Clearly, any solution to this boun-
dary value problem must have points where it is nondifferen-
tiable. But we can still meaningfully talk about solutions upon
considering spaces that include nondifferentiable functions (re-
call that well-posedness is always well-posedness in some space).
Once we make this concession; however, it turns out that there
are infinitely many such “weak” solutions, although there is a
distinguished solution which is the physical one, namely,
uðxÞ ¼ 1=2 − jx − 1=2j. But there is no guarantee that a numeri-
cal algorithm will converge to the physical solution, and, in fact,
in many cases it will converge to some of the other (infinitely
many) “weak” (unphysical) solutions. This is an issue caused by
the lack of uniqueness in that even if one is highly confident that a
numerical scheme will reproduce an actual solution to the
equation, it might be wrong solution. An example illustrating
problems caused by lack of existence of solutions is provided by
the inviscid Burgers equation: solutions will typically develop a
singularity in finite time after which a solution no longer exists in
any classical sense (one can still attempt to talk about “weak”
solutions). But if one numerically solves Burgers’ equation with
the Lax–Friedrichs scheme, the numerical solution will keep
running smoothly after the singularity for arbitrary large times.
Had one not known about the formation of a singularity from a
theoretical point of view, one would be led to think that a nice,
classical, solution exists when in fact there is none. This is,
however, not a problem of being careless with the numerical
simulation as the Lax–Friedrichs scheme has ample use in
numerical analysis.

7In fact, the local Cauchy problem is well-posed for
the Einstein-Boltzmann system, as proven by Bancel and
Choquet-Bruhat [48,49].

8In this paper we work with the equations written in second
order form. The mention of reducing to a first order system was
for a comparison with IS theory only.
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and cosmology communities. Before we present our new
approach, here we briefly mention other theories of
relativistic viscous fluids that attempt to overcome the
acausality and instability issues present in relativistic NS
theory. One causal theory of relativistic viscous hydro-
dynamics, defined solely in terms of the hydrodynamic
fields and applicable, in particular to pure radiation fluids
and ideal gases, has been recently proposed in [51–53].
This theory is well-posed and linear stability has been
verified in the fluid’s rest frame. However, as far as we
know, investigations addressing the stability of the equa-
tions of motion in a Lorentz boosted frame and coupling to
Einstein’s equations have not appeared in the literature for
the energy-momentum tensor introduced in [51–53]. It is
not known whether [51–53] can be derived from kinetic
theory. Another proposal was put forward by Lichnerowicz
back in the 1950’s [54], but only recently it has been shown
to yield a theory that is causal and well-posed, including
when dynamically coupled to gravity, at least in the cases
of irrotational fluids [55,56] or with restrictions on the
initial data [57]. Applications of Lichnerowcz’s theory to
cosmology appeared in [56,58,59]. It is not known whether
Lichnerowicz’s theory is linearly stable around equilib-
rium, nor whether it can be derived from kinetic theory.
A large class of fluid theories can be constructed from

the formalism of divergence-type (DT) theories [60–63].
While this formalism per se does not guarantee any of the
aforementioned properties (causality, linear stability, well-
posedness, or coupling to gravity) [3], it has been success-
fully applied to the construction of theories that are causal
near equilibrium [64–66] (see also [67–69]). In fact, DT
theories provide a very general formalism for the study of
fluid dynamics that can be showed to be compatible with
kinetic theory, but there is no prescription of how to
determine a particular set of fields and equations of motion
for the study of concrete problems. Hence, despite their
flexibility (or perhaps because of it), applications of DT
theories in the study of nuclear physics, astrophysics, and
cosmology have so far been limited.
In Ref. [70] the authors construct a linearly stable theory

involving only the hydrodynamic variables. Their theory is
derived from kinetic theory, although well-posedness and
causality remain open. A similar statement holds for the
theory introduced in [71]. Last but not least, motivated by
the rapid expansion and the highly anisotropic initial state
of the quark-gluon plasma formed in heavy ion collisions, a
new set of fluid dynamic equations has been studied
defining the so-called anisotropic hydrodynamics formal-
ism [72,73]. This subject is still under development [74],
and statements regarding stability, causality, and existence
of solutions are not yet available.

A. About existence and uniqueness of solutions

Before continuing our discussion of relativistic viscous
fluids, we recall the definition of local well-posedness for a

system of partial differential equations and discuss its
significance. We chose to highlight the importance of this
concept, which captures the idea of the existence and
uniqueness of solutions, for the following reason. For most
traditional physical theories, the existence and uniqueness of
solutions has been long established.9 Therefore, we can
extract physical consequences of the equations of motion
withoutworryingwhether such consequences are based on a
vacuous assumption (e.g., on equations without solutions).
For relativistic viscous fluids, however, this is not the case.
As discussed above, very little is known about local well-
posedness for relativistic models with viscosity. Therefore,
the question of working with equations that admit solutions
to begin with becomes of primary importance.
Consider inR ×Rn a (linear or nonlinear) kth order partial

differential equation for a function φ, which we write as
Pφ ¼ 0 (for instance, P could be the wave operator). We
think of R ×Rn as a parametrization of spacetime in terms
of a time variable t ∈ R and spatial variables x ∈ Rn. Let X
be a function space (typically, but not necessarily, a Banach
or Hilbert space) of functions defined on Rn. For example,
one could have X ¼ C∞ðRnÞ, the space of infinitely differ-
entiable functions onRn. We say that the partial differential
equation is locally well-posed in X if the following holds.
Given k functions φl, l ¼ 0;…k − 1, there exist a T > 0
and a function φ defined on ½0;TÞ × Rn, such that φ
satisfies the differential equation on ½0;TÞ ×Rn, φð0; xÞ ¼
φ0ðxÞ;…; ∂k−1

t φð0; xÞ ¼ φk−1ðxÞ for all x ∈ Rn, where ∂t is
differentiation with respect to the first coordinate inR × Rn,
and, for each t ∈ ½0;TÞ, φðt; ·Þ ∈ X; moreover, φ is the only
function defined on ½0;TÞ × Rn satisfying these properties.
We considered a scalar partial differential equation in
R ×Rn for concreteness, but the definition of local well-
posedness, aswell as the discussion below, naturally general-
izes to systems and equations defined on manifolds10;
see, e.g., [75, Definition 1.2.2].
Naturally, the functions fφlgkl¼1 correspond to the initial

conditions for the partial differential equation. Thus,
roughly speaking, local well-posedness says that given
initial conditions, there exists a unique solution to the
equation taking the given initial data at time zero.11 Since
φðt; ·Þ ∈ X and φð0; xÞ ¼ φ0ðxÞ, we must have φ0 ∈ X.
The condition φðt; ·Þ ∈ X can be interpreted as saying that
the solution does not “lose information” with respect to the
given initial conditions (e.g., if the initial conditions are
square integrable, so is the solution).

9See, e.g., [10], for a discussion of several physical models that
are locally well-posed.

10For geometric equations such as Einstein’s equations,
uniqueness is understood in a geometric sense, i.e., up to changes
by diffeomorphisms. See, e.g., [11, Theorem 10.2.2].

11Strictly speaking, we are defining here local well-posedness
of the initial value problem, which is the relevant notion of the
existence and uniqueness for evolution problems. We can also
define local well-posedness for boundary value problems, etc.
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One can also consider variations of the above. For
instance, considering that each φk belongs a priori to some
function space Xk (X0 ≡ X in the previous notation), we
could demand that ∂k

tφðt; ·Þ ∈ Xk, and in this case we talk
about local well-posedness in X0 × � � � × Xk−1. Many
authors include in the definition of local well-posedness
the requirement that solutions vary continuously with the
initial data, meaning that the map φ0 ↦ φ is continuous12

with respect to the topology ofX. One often talks about local
well-posedness in the sense of Hadamard (see, e.g., [76,77]
and references therein) when one wants to stress that
continuity with respect to the initial data is also taken into
account in the definition of local well-posedness. Here, for
simplicity, wewill not include such a continuity requirement
in the definition of local well-posedness, since establishing it
usually requires substantial further technicalwork thatwould
distract us from the main point of local well-posedness,
which is to guarantee that solutions exist, as we now discuss.
Local well-posedness furnishes the basic starting point for

the validation of a theory from a theoretical point of view, as
it would be hard to imagine what it means to develop a
formalism based on equations that have no solution. It would
be equally puzzling to work with equations that admit more
than one solution (for the same initial data). In this regard, it
is extremely important to stress that local well-posedness is
always local well-posedness in X, i.e., it depends on the class
of functions we choose to work with. For instance, it can
happen that an equation admits no solution for arbitrary
initial data in certain function space X, but that a solution
exists and is unique if we restrict the initial data to lie in some
subspace X0 ⊂ X (see, e.g., [78, Chap. 4]). It can also happen
that solutions exist but are not unique for initial data in some
function space but they exist and are unique for initial data in
some other function space (see, for instance, [79,80]). The
choice of X is typically tied to some physical requirement,
e.g., functions that are square integrable in quantum
mechanics or vector fields that are divergence-free in the
classical incompressible Navier-Stokes equations. But as this
discussion and the previous references indicate, the choice of
X may also be based on available mathematical techniques
or in the plain fact that some equations are not locally well-
posed in some function spaces.13

Moreover, local well-posedness is also very important
for the validation of numerical codes. Typically, when
constructing a numerical algorithm one would like to show
that it converges. Broadly speaking, this means that the
sequence of numerical solutions obtained by discretization
converges to the actual solution of the differential equation
when the “size” of the discretization approaches zero.
Obviously, this is predicated on the idea that the differential
equation is locally well-posed.
Furthermore, local well-posedness guarantees a solution

to exist and to be unique for a finite time interval ½0;TÞ and
some function space X. It is natural to ask how large T can
be, and in particular whether one can have T ¼ ∞, i.e., if
solutions exist and are unique for all time. When the latter
happens, we say that the partial differential equation is
globally well-posed. Questions of global well-posedness
naturally arise for nonlinear equations since they tend to
develop singularities. For example, one has the famous
singularity theorems for Einstein’s equations14 [88], or the
formation of shock waves for fluid dynamic equations (see
[89,90] and references therein), or yet blowup phenomena
for nonlinear wave equations (see [91] and references
therein). From a physical perspective, when the equations
are not globally well-posed it becomes important to under-
stand the nature of the singularity. For example, the
presence of a singularity might simply indicate a limitation
of the effective description. On the other hand, absent a
better effective description, one may attempt to enlarge
the function space X to allow for functions with singular-
ities, e.g., distributions. Questions of this type are typi-
cally very challenging and are beyond the scope of this
work.15 Henceforth, we will refer to well-posedness to
mean local well-posedness throughout, although we will
make some brief observations about global well-posedness
in Sec. VIII B.

B. Organization of the paper

The remaining of the paper is organized as follows. In
Sec. II we introduce conformal viscous hydrodynamics
(starting from a discussion of the nonconformal case). In
Sec. III we introduce our new tensor and discuss some of its
properties. Causality and well-posedness are proved in
Sec. IV whereas linear stability is established in Sec. V. In
Sec. VI we show how our tensor can be derived from
relativistic kinetic theory. Section VII provides applications
of this new theory and a brief discussion on the choice of
initial conditions. Section VIII discusses our results,

12In the mathematical literature, continuity with respect to the
initial data is sometimes also referred to as stability, but we stress
that this is entirely different from the notion of stability which is
discussed in this paper (which follows the notion of stability
introduced in [19], see Sec. V). For example, the ordinary dif-
ferential equation _x ¼ x, xð0Þ ¼ x0 has a solution xðtÞ ¼ x0et,
which varies continuously with x0. However, the trivial solution
xtrivialðtÞ≡ 0 corresponding to x0 ¼ 0 is unstable in the termi-
nology of this paper in that for any x0 ≠ 0, xðtÞ will diverge
exponentially from xtrivial.13For instance, the (nonrelativistic) incompressible Euler
equations are locally well-posed in the Sobolev spaces Hs for
s > n

2
þ 1 [81], but are not locally well-posed in Hs for s ¼ n

2
þ 1

[82].

14Although, for initial data near Minkowski, Einstein’s
equations are globally well-posed [83]. See [84–87] for related
results.

15As a matter of fact, the incompressible nonrelativistic
Navier-Stokes equations are locally well-posed but the question
whether global well-posedness also holds in this case is one of the
Millennium Prize problems in mathematics.
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including a critical analysis of the theory’s limitations and
open questions, and possible generalizations. Conclusions
are presented in Sec. IX.

C. Conventions

For the rest of the paper, we work in units such that
c ¼ ℏ ¼ kB ¼ 1. Our convention for the spacetime metric
is ð−þþþÞ. All indices are lowered and raised with the
spacetime metric. Einstein’s summation convention is
adopted, Greek indices run from 0 to 3, and Latin indices
from 1 to 3.

II. CONFORMAL VISCOUS HYDRODYNAMICS

For completeness, we begin this section with a discus-
sion about the more general case of a nonconformal
relativistic fluid in the absence of conserved vector currents
(e.g., the baryon number current). The corresponding
conformal limit, which is the focus of this paper, will be
discussed in detail below.
In general, one may always decompose [50] the energy-

momentum tensor of a fluid as follows16:

Tμν ¼ Euμuν þ PΔμν þ πμν; ð1Þ

where πμν is the symmetric traceless viscous tensor con-
tribution orthogonal to the flow, E ¼ uμuνTμν is the energy
density measured by a comoving observer, and P ¼
ΔμνTμν=3 is the fluid’s total pressure. In the standard
approach by Landau and Eckart, assumed upon writing
(1) (see below), the quantity E in an out-of-equilibrium
state is matched to the equilibrium energy density of an
auxiliary (fictitious) system, with which one may define the
local temperature T and the local equilibrium pressure of
the system via the thermodynamical equation of state
P ¼ PðEÞ. In fact, for a nonconformal fluid the total
pressure of the out-of-equilibrium system may be defined
as P ¼ Pþ Π, where Π is the bulk scalar, which encodes
all the out-of-equilibrium corrections to the pressure. The
fluid description only holds if, besides the condition E ≥ 0,
the out-of-equilibrium correction Π is such that the overall
P is non-negative.
The original ten independent d.o.f. in Tμν are thus

parametrized in (1) by the quantities fE;Π; uμ; πμνg. In
this case, the flow velocity of the system was defined by the
condition uμTμν ¼ −Euν, which was first introduced by
Landau [18]. However, differently than the case of an ideal
fluid, for a system that is out of equilibrium quantities such
as local temperature and flow velocity are not uniquely
defined [22,93]. As a matter of fact, different choices lead
to local temperature and velocity fields that differ from each

other by gradients of the hydrodynamic variables, each
particular choice being called a frame.17 Several frame
choices have been pursued over the years, starting with
Eckart [17], Landau [18], Stewart [94], and others (for a
discussion, see [95]). In Sec. VI we discuss the role played
by such frame choices in the derivation of the hydro-
dynamic equations from kinetic theory.
An alternative decomposition for the energy-momentum

tensor can be written using a different definition of the flow
velocity, namely

Tμν¼ðϵþAÞuμuνþðPðϵÞþΠÞΔμνþπμνþQμuνþQνuμ;

ð2Þ

where now ϵ is matched to the corresponding expression
for the energy density in equilibrium, A is the nonequili-
brium correction to the energy density, PðϵÞ is the equi-
librium pressure defined by the equilibrium equation of
state, Π is again the out-of-equilibrium correction to the
pressure, and Qμ ¼ −Δμ

νTναuα is the flow of energy (heat
flow).18 These dissipative contributions A, Qμ, Π, and πμν

to the energy-momentum tensor are such that they vanish in
equilibrium. And, in fact, in this description deviations
from local equilibrium to the energy density and pressure
are treated in equal footing, with A playing a role in the
total energy density of the system analogous to what Π
represents to the total pressure. This can lead to further
insight on how relativistic fluids behave out-of-equilibrium,
and we note that such a decomposition was recently
employed in Ref. [96] in applications to heavy-ion colli-
sions. It is clear, however, that the decomposition of the
energy-momentum tensor in terms of a new set of variables
fϵ;A;Π; uμ;Qμ; πμνg is underdetermined; i.e., four extra
conditions must be imposed to take into account the fact
that there are only ten independent variables in Tμν. Such
conditions may be derived using either the guidance of a
microscopic description, such as kinetic theory, or via
assumptions regarding the definition of the entropy current
out-of-equilibrium in the sense of Israel and Stewart [96].

16Provided theweak energy condition is satisfied, see Sec.VIII B
and Ref. [92].

17This meaning of the word frame has nothing to do with “rest”
and “boosted frames.” Unfortunately, these terminologies are too
widespread to be changed here. Hence, we use the word frame to
refer to both a choice of local temperature and velocity, e.g., the
Landau frame, and in the usual sense of relativity, e.g., the rest
frame. The difference between both uses will be clear from the
context. We also note that frame, in the sense of a choice of local
variables, has been used unevenly in the literature. In [93], for
instance, frame is used in the same sense as employed here. In
[23], the authors employ frame, or, more specifically, hydro-
dynamic frame, to refer solely to the choice that determines
the local flow velocity, while the choices that determine the
local temperature and chemical potential are called matching
conditions.

18We note that even though we used the same variable for the
flow velocity and Π in Eqs. (1) and (2), these quantities are not
the same.
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In this paper we focus on the case of conformal hydro-
dynamics [6,97], which provides the simplest set of
assumptions regarding the properties of the underlying
microscopic theory that can be used to study relativistic
hydrodynamic phenomena. In this case Tμ

μ ¼ 0 and, thus
ϵ ¼ 3P (i.e., ϵ ∝ T4 with T being the temperature), and
the equations of motion ∇μTμν ¼ 0 change covariantly
under a Weyl transformation of the metric, i.e., under
gμν → e−2Ωgμν, with Ω being an arbitrary Lorentz scalar.
Since the quark-gluon plasma is approximately conformal
at sufficiently large temperatures [98], conformal fluids
with their enhanced set of symmetries provide a test bed for
numerical investigations in relativistic hydrodynamics, as
shown in [30]. However, we note that conformal invariance
fixes the equation of state but it does not fully determine
the dissipative corrections to the energy-momentum
tensor, which must be specified by further assumptions.
Nevertheless, conformal invariance allows us to write the
most general energy-momentum tensor as

Tμν ¼ ðϵþAÞ
�
uμuν þ Δμν

3

�
þ πμν þQμuν þQνuμ: ð3Þ

The conformal Tμν has nine independent components and
the decomposition above in terms of fϵ; uμ;A;Qμ; πμνg has
13 independent d.o.f. at this level. Therefore, again a choice
must be made to eliminate four extra d.o.f. and fully specify
the system’s dynamics. In order to guarantee a smooth
transition to the ideal fluid limit, it is natural to assume that
such a choice involves the variables fA;Qμ; πμνg. For
instance, as mentioned above Landau [18] defined the flow
and the energy density out of equilibrium in such a way that
Qμ and A vanish.
To proceed, one must decide whether the fields

fA;Qμ; πμνg that are absent in the ideal fluid limit are
to be treated as independent dynamical variables or are
fully specified by the original hydrodynamic fields fϵ; uμg.
The former implies that five extra equations of motion must
be given, in addition to the conservation law of energy and
momentum. This idea is pursued in the aforementioned IS
theories and more generally in extended irreversible
thermodynamics theories [99]. In this case, it is natural
to employ Landau’s definition to define conformal hydro-
dynamics, with πμν being defined by its own set of
equations of motion. The degree of deviation from local
equilibrium helps determine the equation of motion for
πμν [21].
Another option consists in assuming that the set

fA;Qμ; πμνg is constructed using derivatives of the hydro-
dynamic fields fϵ; uμg, as in a gradient expansion [6]. In
the standard gradient expansion approach, dissipative
effects are taken into account in the energy-momentum
tensor via the inclusion of terms containing higher order
derivatives of the hydrodynamic variables [6], which are
(formally) assumed to be small corrections around local

equilibrium. To a given order in the expansion, one
includes in the energy-momentum tensor all the possible
terms compatible with the symmetries (e.g., conformal
invariance), and this procedure was carried out to second
order in [6] assuming Landau’s definition of the hydro-
dynamic fields (i.e., the Landau frame), and to third order
in [100].
In a gradient expansion, to first order in derivatives, there

is only one choice for πμν, namely, πμν ¼ −2ησμν, where
σμν ¼ ð∇hμiuν þ∇hνiuμÞ=2 − 1

3
Δμν∇αuα is the shear ten-

sor, ∇hμi ¼ Δν
μ∇ν is the transverse covariant derivative, and

η is the shear viscosity transport coefficient [for a con-
formal fluid η ∝ s ∝ T3, with s ¼ 4ϵ=ð3TÞ being the
entropy density]. Using the Landau frame and keeping
terms up to first order in gradients, one finds the con-

formal Navier-Stokes energy-momentum tensor TNS
μν ¼

ϵðuμuν þ Δμν

3
Þ − 2ησμν [6,97]. At the linear level, this theory

accurately describes the long wavelength behavior of sound
and shear hydrodynamic disturbances around a hydro-
static equilibrium: ωsoundðkÞ ¼ 1ffiffi

3
p jkj − i 2

3T
η
sk

2 þOðk3Þ,
ωshearðkÞ ¼ −i ηs

k2

T þOðk4Þ [101], in the sense that these
dispersion relations can be directly matched to microscopic
calculations, a procedure that may be used to determine the
value of η in a given system. However, as discussed above,
the relativistic NS equations are plagued with instabilities
and acausal behavior that severely limit their application in
fluid dynamic calculations.
Since the gradient expansion is used to derive the

relativistic NS equations, it is believed that such an
approach is generally responsible for the aforementioned
problems displayed by these equations, as the underlying
microscopic theory is widely expected to be free from
pathologies. Therefore, one may be tempted to conclude
that the particular type of coarse-graining procedure
defined by the gradient expansion is inherently incompat-
ible with causality and stability. However, one may also
argue that the general reasoning behind the gradient
expansion should be the most natural way to construct
effective theories that describe the hydrodynamic regime of
a fluid that is sufficiently near local equilibrium. In this
paper we show that causality and stability are indeed
compatible with the gradient expansion as long as one
abandons the usual definition of hydrodynamic variables in
relativistic viscous fluid dynamics put forward by Landau
and Eckart.

III. NEW CONFORMAL TENSOR

Here we investigate causality and stability in relativistic
viscous hydrodynamics using only the usual hydrodynamic
fields in Tμν, thus without introducing new dynamical d.o.f.
as in IS-like theories. In this section we limit ourselves to
introducing our new conformal tensor and discuss some of
its properties. Its derivation will be given in Sec. VI using
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the relativistic Boltzmann equation and a suitable pertur-
bative expansion in spacetime gradients.
Our new tensor corresponds to (3) with the choices A ¼

3χ DT
T and Qμ ¼ λ

DhμiT
T , where Dμ is the Weyl derivative

[102] and Dhμi ¼ Δμ
νDν. Or, since ϵ ∝ T4 and 3PðϵÞ ¼ ϵ,

we can alternatively write A ¼ χ Dϵ
ϵþP and Qμ ¼

λ
Dhμiϵ
ϵþP , where Dϵ ¼ uμ∇μϵþ ð4=3Þϵ∇μuμ and Dhμiϵ ¼

4ϵuλ∇λuμ þ∇hμiϵ, which is more convenient for our
purposes. Using these expressions for A and Qμ into (3)
yields

Tμν ¼
�
ϵþ 3χ

4ϵ
Dϵ

��
uμuν þ Δμν

3

�
− 2ησμν

þ λ

4ϵ
ðuμDhνiϵþ uνDhμiϵÞ: ð4Þ

This is the most general energy-momentum tensor one can
write for a conformal fluid to first order in gradients of the
hydrodynamic fields fϵ; uμg. The coefficients χ=ϵ and λ=ϵ
in (4) define time scales (∝ 1=T) that control the behavior
of the theory in the ultraviolet. They work as causal
regulators because, as we shall see, when λ and χ are
different than zero and appropriately chosen, the equations
of motion are causal, whereas they become acausal when
λ ¼ 0 ¼ χ [since then (4) reduces to NS]. Furthermore,
when these coefficients are nonzero and causality holds the
disturbances in the hydrodynamic fields are resummed in
the sense that the dispersion relations for sound and shear
channels are not simple polynomial functions of momenta
(see the dispersion relations in Sec. V). We note that
conformal invariance implies that χ and λ are proportional
to η.
We remark that the dynamical variables of (4) are simply

ϵ and the flow uμ, which obey second order nonlinear
partial differential equations determined by ∇μTμν ¼ 0.
Also, we note that the hydrodynamic fields ϵ and uμ in this
theory do not coincide with those in either Landau’s or
Eckart’s frames. In fact, due to the ambiguities in the
definition of local temperature and velocity in the presence
of dissipation (see above discussion), the fields ϵ (or T) and
uμ in (4) can be thought as auxiliary fields used to
parametrize Tμν [93]. We also stress that, regardless of
how we think of the parametrization given by ϵ and uμ,
once the equations of motion have been shown to satisfy
desired physical requirements (e.g., causality and stability),
then one can solve them and reconstruct Tμν, from which
further physical quantities of interest can be derived. Also,
we note that for sufficiently small gradients the solutions
for the fields ϵ and uμ in (4) will be near the corresponding
quantities obtained by solving the ideal fluid equations.
The nonrelativistic limit of the conformal fluid

introduced here may be computed in the same way as in
[103], and this yields the incompressible nonrelativistic

Navier-Stokes equations, with incompressibility being a
consequence of the conformal invariance. Following the
steps in [103], we see that terms containing λ and χ vanish
in the nonrelativistic limit since they are proportional to
higher order terms. This shows that the new tensor in (4)
also has the correct nonrelativistic limit.
The tensor in (4) provides a causal generalization of NS

theory constructed without the introduction of additional
dynamical variables beyond those already present in the
ideal fluid limit. We rigorously prove below the local
existence, uniqueness, and causality of solutions to this
viscous theory (in the full nonlinear regime) both in a
Minkowski background and also when the fluid is dynami-
cally coupled to Einstein’s equations. In a later section, we
establish the stability of the solutions to the equations of
motion in the linearized regime, and we show how (4) can
be ultimately derived from kinetic theory. Moreover, we
develop applications in important known test-cases. This is
the first time that such nontrivial statements can be
rigorously made about viscous fluid dynamics in the
relativistic regime since Eckart’s first proposal in 1940.

IV. WELL-POSEDNESS AND CAUSALITY

In this section we consider Einstein’s equations Rμν−
1
2
Rgμν þ Λgμν ¼ 8πGTμν, with energy-momentum tensor

given by (4). It is assumed that the equation uμuμ ¼ −1 is
also part of the system. An initial data set I for this system
consists of the usual initial conditions ðΣ; g0; κÞ for
Einstein’s equations (Σ a three-dimensional manifold
endowed with a Riemannian metric g0 and a symmetric
two tensor κ), two scalar functions ϵ0 and ϵ1 on Σ (energy
density and its time-derivative at the initial time), and two
vector fields v0 and v1 onΣ (the initial values for the velocity
and its time-derivative), such that the constraint equations
are satisfied [11, Chap. 10]. For a conformal theory all
transport coefficients are ∝ T3 so we can assume χ ¼ a1η,
λ ¼ a2η, with a1;2 constants. The meaning of “sufficiently
regular” stated in the theorem is explained below.
Theorem 1. Let I ¼ ðΣ; g0; κ; ϵ0; ϵ1; v0; v1Þ be a suffi-

ciently regular initial data set for Einstein’s equations
coupled to (4). Suppose that Σ is compact with no
boundary, ϵ0 > 0, and that η∶ð0;∞Þ → ð0;∞Þ is analytic.
Finally, assume that a1 ≥ 4 and a2 ≥

3a1
a1−1

. Then:
(A) There exists a globally hyperbolic development M

of I .
(B) Let ðg; ϵ; uÞ be a solution of Einstein’s equations

provided by the globally hyperbolic developmentM.
For any x ∈ M in the future of Σ, ðgðxÞ; uðxÞ; ϵðxÞÞ

depends only on I jiðΣÞ∩J−ðxÞ, where J−ðxÞ is the causal past
of x and i∶Σ → M is the embedding associated with the
globally hyperbolic development M.
Statement (A) means the Einstein’s equations admit the

existence and uniqueness of solutions (uniqueness up to a
diffeomorphism, as usual in general relativity). Statement

BEMFICA, DISCONZI, and NORONHA PHYS. REV. D 98, 104064 (2018)

104064-8



(B) says that the system is causal. Σ is assumed compact
and with no boundary for simplicity, as otherwise asymp-
totic and/or boundary conditions would have to be pre-
scribed. The assumption ϵ0 > 0 guarantees that the
equations of motion are not degenerate (see Sec. VIII B
for more details). Above, sufficiently regular means that the
initial data belongs to appropriate Gevrey spaces (which are
subspaces of the space of smooth functions, see [104] for a
definition). It is crucial to point out, however, that the
causality of the equations does not depend on the use of
Gevrey spaces, and it will automatically hold in any space
of functions where existence and uniqueness can be
established.
Theorem 2. Under assumptions a1 ≥ 4 and a2 ≥

3a1
a1−1

as
above, a statement similar to Theorem 1, i.e., existence,
uniqueness, and causality holds for solutions of∇μTμν ¼ 0,
with Tμν given by (4), in Minkowski background.
The conditions a1 ≥ 4 and a2 ≥

3a1
a1−1

in Theorems 1 and
2 are technical, but they provide a wide range of values for
applications in different situations of interest. Note that
these are sufficient conditions; i.e., we are not saying (and
we do not know) whether causality is lost if one of these
two conditions is not satisfied. Moreover, these conditions
are easily accommodated with those determined by kinetic
theory for the coefficients χ and λ (see Sec. VI) and the
stability conditions of Sec. V.
The proofs of Theorems 1 and 2 will be an application of

the combined theorems of Leray and Ohya [105, §6,
Sec. 27] and Choquet-Bruhat [106, p. 381]. A statement
of the result as needed here appears in [10, p. 624], and it
can be summarized as follows. Suppose that the character-
istic determinant [107, VI, §3.2] of the system PI

Kφ
K ¼ 0 is

a product of hyperbolic polynomials whose highest order is
at least the order of the equations (all equations in the
system are assumed of the same order). Assume that the
characteristic cones determined by the hyperbolic poly-
nomials are all contained in the light cone in coordinate
space and their intersection has a nonempty interior. Then,
the system admits a unique causal solution in appropriate
Gevrey spaces. We recall that a polynomial pðξ0;…; ξnÞ of
orderm is called hyperbolic if for every ðξ0;…; ξnÞ ≠ 0, the
equation pðξ0;…; ξnÞ ¼ 0 admits m real distinct solutions
ξ0 ¼ ξ0ðξ1;…; ξnÞ [107, VI, §3.7]. For brevity, our proof
will omit certain technicalities that might be of interest for
more mathematically minded readers but would obfuscate
the main ideas. Those interested in such technical aspects
can consult [108], where proofs of Theorems 1 and 2 are
given for an audience of mathematically inclined readers.19

Proof of Theorem.—As usual in general relativity, we
embed Σ into R × Σ and work in local coordinates in the
neighborhood of a point p ∈ Σ. We can assume that gðpÞ is
the Minkowski metric. We consider Einstein’s equations
written in a wave gauge, ∇μTμν ¼ 0, and

uλuαuμ∇μ∇αuλ þ uα∇αuλuμ∇μuλ ¼ 0; ð5Þ

which follows from uμuμ ¼ −1 after twice differentiating
and contracting with u (hence, 15 equations for the 15
unknowns gαβ, uα, ϵ). The characteristic determinant of
the system equals p1ðξÞp2ðξÞp3ðξÞp4ðξÞ where p1ðξÞ ¼
1
12ϵ η

4ðuμξμÞ2, p4ðξÞ ¼ ðξμξμÞ10,

p2ðξÞ ¼ ½ða2 − 1Þððu0Þ2ξ20 þ ðu1Þ2ξ21 þ ðu2Þ2ξ22
þ ðu3Þ2ξ23Þ − ξμξμ þ 2ða2 − 1Þðu1u2ξ1ξ2
þ u1u3ξ1ξ3 þ u2u3ξ2ξ3Þ þ 2ða2 − 1Þu0ξ0uiξi�2;

and

p3ðξÞ ¼ ½4a1ða2 − 3Þ − 4a2�ðuμξμÞ4
− 4½2a2 þ a1ð3þ a2Þ�ðuμξμÞ2ξνξν
− ða1 − 4Þa2ðξμξμÞ2:

Here, ξ ¼ ðξ0;…; ξ3Þ is an arbitrary element of the cotan-
gent bundle at a fixed point in the spacetime manifold (i.e.,
ξ are coordinates in momentum space), in accordance to the
prescription to compute the characteristic determinant [107,
VI, §3.2]. The polynomials uμξμ and ξμξμ are hyperbolic
polynomials if g is a Lorentzian metric and u is timelike.
Thus, p1ðξÞ is the product of two hyperbolic polynomials
[recall that ϵ > 0 and ηðϵÞ > 0] and p4ðξÞ is the product of
ten hyperbolic polynomials which stem from the principal
part of Einstein’s equations.
To analyze p2ðξÞ we write p2ðξÞ ¼ ðp̃2ðξÞÞ2, where

p̃2ðξÞ is the polynomial between brackets in the definition
of p2ðξÞ. Note that the assumptions on a1 and a2 imply
that a2 ≥ 3.
Let us investigate the roots ξ0 ¼ ξ0ðξ1; ξ2; ξ3Þ of the

equation p̃2ðξÞ ¼ 0. Consider first the case where p̃2ðξÞ is
evaluated at the origin, in which case g is the Minkowski
metric. Then the roots are ξ0;�¼− 1

1þða2−1Þð1þu2Þðða2−1Þu·
ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þða2−1Þu2Þξ2−ða2−1Þðu·ξÞ2

q
Þ, where

u ¼ ðu1; u2; u3Þ, u2 ¼ ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2, ξ ¼ ðξ1; ξ2;
ξ3Þ, ξ2 ¼ ξ21 þ ξ22 þ ξ23, and · is the Euclidean inner product.
We see that if ξ ¼ 0, then ξ0;� ¼ 0 andhence ξ ¼ 0. Thus,we
can assume ξ ≠ 0. The Cauchy-Schwarz inequality gives
u2ξ2 − ðu · ξÞ2 ≥ 0, hence ξ0;þ and ξ0;− are real and distinct
for a2 ≥ 3. We conclude that p̃2ðξÞ is a hyperbolic poly-
nomial at the origin. Since the roots of a polynomial vary
continuously with the polynomial coefficients, p̃2ðξÞ will

19In [108], for simplicity, only the case a1 ¼ 4, a2 ≥
3a1
a1−1

¼ 4
is treated. The arguments there presented, however, are essen-
tially the same to cover the remaining cases. In fact, the only
substantial difference for other values of a1 is the computation of
the characteristic determinant, which is presented in detail here.
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have two distinct real roots at any point near the origin, hence
on the entire coordinate chart (shrinking the chart if neces-
sary). Therefore, p2ðξÞ is the product of two hyperbolic
polynomials.
We now move to analyze p3ðξÞ. First consider a1 ¼ 4, in

which case a2 ≥ 4. Then p3ðξÞ reduces to p3ðξÞ ¼
½12ð−4þ a2ÞðuμξμÞ2 − 24ð2þ a2Þξμξμ�ðuνξνÞ2. The term
ðuνξνÞ2 can be grouped with p1ðξÞ, whereas the term
between brackets can be analyzed similarly to p2ðξÞ above,
and we conclude, using a2 ≥ 4, that it is a hyperbolic
polynomial of degree two.
Consider now a1 > 4 and a2 ¼ 3a1

a1−1
. Then the term

coefficient of ðuμξμÞ4 in p3ðξÞ vanishes. We can then factor
ðuμξμÞ2 and a direct algebraic computation, as above,
reveals that the remaining polynomial is hyperbolic of
degree two for a1 > 4.
It remains to analyze the case a1 > 4 and a2 >

3a1
a1−1

. Note

that in this case the coefficients of both ðuμξμÞ4 and ðξμξμÞ4
in p3ðξÞ are positive, while the middle coefficient,
−4½2a2 þ a1ð3þ a2Þ�, is negative. Under these circum-
stances we can factor p3ðξÞ as

p3ðξÞ ¼ Xðξμξμ − YuμξμÞðξνξν − ZuνξνÞ

with X; Y; Z > 0. But for any W > 0, the polynomial
ξμξμ −Wuμξμ is a hyperbolic polynomial of degree two,
as it can be seen by a direct computation. Alternatively, we
can note that if W > 0 then ξμξμ −Wuμξμ is a nonzero
multiple of the characteristic polynomial of the acoustical
metric [89] with sound speed equal to 1=ð1þWÞ.
Using the above explicit expression for the roots of

p̃2ðξÞ ¼ 0, it is not difficult to verify that the cone defined
by p2ðξÞ ¼ 0 contains20 the light cone gμνξμξν ¼ 0. For
p1ðξÞ and p4ðξÞ this condition is straightforward. Finally,
the same is true for p3ðξÞ under all the above conditions
[using again the acoustical metric as a shortcut, note that
ξμξμ −Wuμξμ ¼ 0 defines a cone that contains the light
cone if W > 0 in that the sound speed in this case satisfies
0 < 1=ð1þWÞ < 1]. Moreover, the intersection of these
cones has a nonempty interior.
Since the equations are of second order and the highest

degree among the above hyperbolic polynomials is two, we
have verified all the conditions in [10, p. 624]. We conclude
that Einstein’s equations in wave gauge admit a unique and
causal solution in a neighborhood of x. This gives a
solution to Einstein’s equations in arbitrary coordinates
(near x) because, by assumption, the initial data satisfies the

Einstein constraint equations. Equation (5) implies that uμ

remains normalized if it is normalized at time zero. A
standard gluing argument [11, p. 263] now produces a
solution defined on the entire manifold. This completes the
proof. □

Proof of Theorem 2.—This is exactly as the proof of
Theorem 1, except that now the polynomial p4ðξÞ, which
comes from Einstein’s equations, does not figure in the
characteristic determinant. □

V. LINEAR STABILITY ANALYSIS

We follow Hiscock and Lindblom [19] and consider the
linearized version of the equations of motion for the theory
defined by (4). We perform linear perturbations Ψ →
Ψð0Þ þ δΨ around thermodynamical equilibrium character-

ized by a constant flow uð0Þμ and equilibrium energy density

ϵ0 (i.e., ∇μu
ð0Þ
ν ¼ 0 ¼ ∇μϵ0), where Ψ ¼ uμ; ϵ; η; χ; λ. Our

background is the Minkowski metric, which remains
undisturbed; i.e., we work in the Cowling approximation
[109] where δgμν ¼ 0. As in [19], we consider only the
plane wave solutions to the perturbation equations
δΨðxÞ → δΨðkÞeikμxμ with kμ ¼ ðω; k; 0; 0Þ. We begin

our analysis in the fluid’s rest frame so that uð0Þμ ¼
ð−1; 0; 0; 0Þ. The equations of motion separate into two
independent channels, the so-called sound and shear
channels, whose modes are defined by the solutions of
the following equations:

sound∶ A0 þ A1Γþ A2Γ2 þ A3Γ3 þ A4Γ4 ¼ 0;

shear∶ λ̄Γ2 þ Γþ η̄k2 ¼ 0;

where Γ ¼ −iω [19], A0 ¼ 3k2 þ k4λ̄ðχ̄ − 4η̄Þ, A1 ¼
3k2ð4η̄þ χ̄ þ λ̄Þ, A2 ¼ 9þ 6k2ð2η̄þ λ̄Þχ̄, A3 ¼ 9ðλ̄þ χ̄Þ,
A4 ¼ 9λ̄ χ̄, momenta are rescaled by the background
temperature T0, η̄ ¼ η=s, λ̄ ¼ λ=s, and χ̄ ¼ χ=s. The modes
are stable if their solutions are such that ReΓðkÞ ≤ 0 [19]
and, in the rest frame, this occurs when η, λ, χ > 0
and χ ≥ 4η.
Tighter constraints appear by analyzing the stability in a

boosted fluid where uð0Þμ ¼ ð−γ; γvÞ, with 0 ≤ jvj < 1
constant [19,110,111]. For the shear channel, the previous
rest frame conditions are sufficient to guarantee stability
also in a boosted frame. For the sound channel, stability
in a boosted frame requires that η > 0, χ ¼ a1η, λ ≥
3ηa1=ða1 − 1Þwith a1 ≥ 4. We note that these are precisely
the same conditions needed in Theorems 1 and 2, guaran-
teeing causality, local existence and uniqueness of solu-
tions, and linear stability around equilibrium. This is the
first time that such general statement can be made rigorous
in relativistic viscous hydrodynamics.21 We note that our

20By definition of the characteristic determinant, the poly-
nomials piðξÞ are defined in the cotangent bundle or, equiv-
alently, in momentum space. By duality, the characteristic cones
associated with piðξÞ ¼ 0 in coordinate space will be inside the
light cone gμνvμvν ¼ 0, hence causal, if they are outside the light
cone in momentum space.

21At the linearized level, a similar statement was made for
Israel-Stewart theory [24]—see also [110,111] for related work.
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theory has nonhydrodynamic modes22 in both channels
even in the rest frame (as does IS theory) and such modes
are stable if λ and χ obey the conditions mentioned above.
The linearized problem studied here shows that our

conditions ensuring causality imply some type of resum-
mation. In fact, consider the dispersion relations of a theory
(in the rest frame) that has the correct NS limit at small
momenta; i.e., ωsoundðkÞ ¼ 1ffiffi

3
p jkj − i 2

3T0

η
sk

2 þOðk3Þ and
ωshearðkÞ ¼ −i ηs

k2

T0
þOðk4Þ, such as the theory defined by

(4) or IS theory. This should be the case in any theory of
viscous hydrodynamics, as it follows directly from gravi-
tational Ward identities [112]. On the other hand, in the
literature the limit jkj → ∞ has been previously used as a
simple test to investigate causality, namely, ωsoundðkÞ and
ωshearðkÞ cannot grow faster than jkj [111], which implies
that the dispersion relations for sound and shear channels
cannot be simple polynomial functions of jkj—hence, in
this view causality implies a resummation of spatial
derivatives. Here we remark that such a connection between
resummation and causality also holds for the theory defined
by Eq. (4). Indeed, from the above dispersion relations,
we find that jωsoundðkÞj ≤ jkj and jωshearðkÞj ≤ jkj for
jkj ≫ T0.
We would like to finish this section emphasizing that this

simple jkj → ∞ test of causality used before in the
literature may only suggest causality violation. As a matter
of fact, there are well-known calculations in causal micro-
scopic theories where ωðkÞ ∼ βjkjwith β > 1 for large jkj,
as found for instance in Ref. [113]. This illustrates that
simplified statements about causality derived in the linear-
ized regime can be sometimes misleading, which reinforces
the idea that causality in viscous relativistic fluid dynamics
should be treated in a more comprehensive manner as done
in the present paper.

VI. DERIVATION FROM KINETIC THEORY

Since the seminal work of Israel and Stewart [21,22,114–
116], the relativistic Boltzmann equation has been consid-
ered a good starting point to understand the emergence of
fluid dynamic behavior in relativistic systems. As usual in
such treatments [50], we consider the Boltzmann equation
in flat spacetime. By general covariance, the same form of
the energy-momentum tensor can then be obtained in
curved spacetimes [117, Chap. 5.4].
Often in kinetic theory one derives the fluid dynamic

equations under simplifying assumptions that allow explicit
calculations to be carried out in a perturbative regime. In
our case, we will consider a conformal gas. Nevertheless,
since this can be viewed as a limiting case of more complex

scenarios, general features, such as rough bounds on the
transport coefficients or the functional form of the energy-
momentum tensor, are expected to hold for other types of
fluids (provided the general features of the derivation, such
as the validity of a perturbative expansion, still hold). In
fact, as we point out further below, much of what follows is
more general and the assumption of a single species
conformal gas is only a useful simplification of the
analysis. Before presenting our kinetic theory derivation
of (4), we begin the next section reviewing some basic
aspects of relativistic kinetic theory that will be needed in
this paper.

A. Relativistic kinetic theory

The Boltzmann equation for a dilute, single species
relativistic gas of particles with a constant mass M (in flat
spacetime) can be written as [118]

kμ∇μfk ¼ C½fk; fk�; ð6Þ

where C½fk; fk� is the collision kernel, fkðxÞ ¼ fðx; kÞ is
the distribution function in phase space, which is a
(dimensionless) Lorentz scalar that depends on the space-
time coordinates xμ and the on shell momenta kμ (i.e., fk
may depend on seven variables altogether). From fk we can
construct coarse-grained quantities such as the particle
current

JμðxÞ ¼
Z
p
pμfpðxÞ

and the energy-momentum tensor

TμνðxÞ ¼
Z
p
pμpνfpðxÞ;

where
R
p ¼ R d3p⃗

ð2πÞ3p0 ¼
R R R dp1dp2dp3

ð2πÞ3p0 and dp1dp2dp3

ð2πÞ3p0 is the

Lorentz invariant measure [118], with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p
due to the on shell mass condition pμpμ ¼ −M2.
The collision kernel of the Boltzmann equation encodes

the nonlinear behavior of this integrodifferential equation.
In the limit of classical statistics, the collision kernel is
given by [118]

C½fk; fk� ¼
Z
k0pp0

Wðkk0jpp0Þðfpfp0 − fkfk0 Þ;

where

Wðkk0jpp0Þ ¼ 1

2
jMj2δð4Þðkμ þ k0μ − pμ − p0

μÞ ð7Þ

andM is the transition amplitude for particle scattering. For
instance, for particles interacting with a constant total cross

22These are modes in the linearized theory with dispersion
relations such that limk→0ωðkÞ ≠ 0. In our theory, these non-
hydrodynamic modes are purely imaginary at zero spatial
momentum.
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section one finds jMj2 ∼ s [23], where s ¼ −ðkμ þ
k0μÞðkμ þ k0μÞ is the Mandelstam variable.
We assume the collision kernel to be such that

∇μJμ ¼
Z
k
kμ∇μfk ¼

Z
k
C½fk; fk� ¼ 0; ð8Þ

and also

∇μTμν ¼
Z
k
kνkμ∇μfk ¼

Z
k
kνC½fk; fk� ¼ 0: ð9Þ

Equation (8) defines the conservation of the particle current
Jμ while (9) implies that the energy-momentum tensor,
constructed using the solution of the Boltzmann equation,
is covariantly conserved. Also, we note that the so-called
equilibrium distribution

feqk ¼ euμk
μ=Tþμ=T ð10Þ

is a zero of the collision kernel; i.e., C½feqk ; feqk � ¼ 0. This
occurs regardless the values assumed for the flow velocity
uμðxÞ, chemical potential μðxÞ, and temperature TðxÞ that
describe local equilibrium. We remark, however, that
feqk ðxÞ is only a solution of the Boltzmann equation when
uμ=T is a Killing vector of the underlying spacetime [118].
We assume that the collision kernel obeys the standard

conditions necessary for the H-theorem to be valid as in
[50]; i.e., we assume that the interactions are such that the
general expression for the entropy current (which is also
valid out of equilibrium)

SμðxÞ ¼ −
Z
k
kμfkðxÞðln fkðxÞ − 1Þ ð11Þ

obeys the second law of thermodynamics

∇μSμ ¼ −
Z
k
C½fk; fk� ln fk ≥ 0; ð12Þ

where the equality only holds in equilibrium. In fact, in
equilibrium one finds that Sμ

eq ¼ Suμ, with S being the
equilibrium entropy density obtained from the first law of
thermodynamics TS ¼ ϵþ P − μN, while the equilibrium
energy density and number density are given by

ϵðxÞ ¼
Z
k
E2
kf

eq
k ðxÞ and NðxÞ ¼

Z
k
Ekf

eq
k ðxÞ; ð13Þ

respectively. The equilibrium pressure is given by

PðxÞ ¼ 1

3

Z
k
Δμνkμkνf

eq
k ðxÞ ¼ 1

3

Z
k
khμikhμif

eq
k ðxÞ;

where khμi ¼ Δμ
νkν, Ek ¼ −uμkμ, and kμ ¼ Ekuμ þ khμi.

From these definitions one can write down the correspond-
ing expressions for the equilibrium energy-momentum

tensor T ideal
μν ¼ R

k kμkνf
eq
k ¼ ϵuμuν þ PΔμν and particle

current Jidealμ ¼ Nuμ [118].

B. Conformal kinetic theory dynamics

Here we will only consider the case of conformal kinetic
dynamics, first discussed in Ref. [6] and later explored in
[119,120], which emerges in the case of a massless gas
pμpμ ¼ 0when the collision kernel changes homogeneously
under Weyl transformations [6]; i.e., gμν → e−2Ωgμν,

pμ∇μfðx;pÞ ¼ C½fp; fp�→ e2Ωðpμ∇μfðx;pÞ ¼ C½fp; fp�Þ:
ð14Þ

This is the case of amassless gas of scalar bosonswith quartic
interactions computed at tree level. Also, an even simpler
conformal kinetic theory can be constructed in the case of a
massless gaswith a cross section∼1=T2. The collision term in
this conformal theory (still assuming classical statistics) may
be written as

C½fk; fk� ¼
σ0
2T2

Z
k0pp0

sð2πÞ5δð4Þðkþ k0 − p

− p0Þðfpfp0 − fkfk0 Þ; ð15Þ

where σ0 is a dimensionless constant that describes
the magnitude of the interactions at fixed temperature. We
will use this particular conformal theory when explicit
calculations become necessary later in this paper.

C. Perturbative expansion

The Boltzmann equation (6) is a nonlinear integrodiffer-
ential equation for fk and, as such, exact solutions are very
rare [121].23 Perturbative methods have been pursued over
the years exploring different limits of its dynamics, as
reviewed in [121]. The hydrodynamical regime is of
particular interest due to its simplicity as it describes the
dynamics of small disturbances near local equilibrium. In
this regard, the two most famous perturbative methods are
the Hilbert series [121] and the Chapman-Enskog expan-
sion [124], whose relativistic generalization are also known
(see, for instance, Ref. [118]). The Hilbert series does not
lead to the usual equations of viscous fluid dynamics [121]
though the Chapman-Enskog expansion, when truncated to
first order in deviations from local equilibrium, leads to the
Navier-Stokes equations. A similar statement holds in the
relativistic regime [50,118], but in this case the correspond-
ing relativistic Navier-Stokes equations are problematic
because of their lack of causality and stability, as mentioned
in Sec. I. In this paper we perform a different type of

23For instance, the first analytical solution of the Boltzmann
equation for an expanding gas was only found recently, see
Refs. [122,123].
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perturbative expansion that yields equations of motion for
the hydrodynamic fields that describe a viscous relativistic
fluid with causal and stable dynamics. This method is based
on the technique developed in Ref. [125], with the
important distinction that here we are only focused on
the hydrodynamic regime.
We start from the Boltzmann equation (6) for a con-

formal fluid and use the fact that it is always possible to
write its solution as

fkðxÞ ¼ feqk ðxÞ þ δfkðxÞ; ð16Þ

where feqk is a (fictitious) local equilibrium distribution
(10), assumed to be the starting point of the perturbative
expansion soon to be developed, and δfk represents the
deviations from equilibrium. The arbitrariness in the
definition of the local hydrodynamic fields fT; uμ; μg in
feqk must be fixed by imposing conditions on δfk [118],
which may be generally written as

Z
k
En
kδfk ¼ 0;

Z
k
Em
k δfk ¼ 0; and

Z
k
Er
kk

hμiδfk ¼ 0;

ð17Þ

where n, m, r, are non-negative integers. In the literature,
the most common choices for these numbers are the Landau
conditions n ¼ 2, m ¼ r ¼ 1 and Eckart’s where n ¼ 2,
m ¼ 1, and r ¼ 0 [118]. In terms of moments, Landau’s
conditions are simply −Jμuμ ¼ N and uμTμν ¼ −ϵuν, with
N and ϵ defined by their equilibrium values in (13). Since
for both Landau and Eckart the number density and the
energy density are matched to their equilibrium expres-
sions, the scalar conditions above are sometimes refereed as
matching conditions, with the vector equation in (17) being
used to the define the so-called “frame” (i.e., r ¼ 1 is the
Landau frame and r ¼ 0 is the Eckart frame) [126].
However, such choices are certainly not unique (as they
reflect our choice in the definition of the hydrodynamic
fields in feqk ), and other conditions may be used in
perturbative expansions [94,95]. Thus, a choice of n, m,
and r determines a choice of local temperature, flow
velocity, and chemical potential. In other words, a choice
of n, m, and r in (17) corresponds precisely to a choice of
frame as discussed in Sec. II. The role played by such a
choice in the perturbative expansion is discussed below.
We remark that the full solution of the Boltzmann

equation does not depend on the choice of the hydro-
dynamic fields in feqk as different choices can always be
accounted for in δfk. However, the moments of fk do
change with the frame when one employs the truncated
solution for fk in the calculation of these quantities (as we
shall do in the following). In fact, it is well-known that Tμν

and Jμ change when going from the Landau to the Eckart
frame in the usual Chapman-Enskog expansion truncated at

first order [50]. Therefore, one may use this freedom in the
definition of the hydrodynamic fields in (17) to determine
which choice is more suited in practice to study the
hydrodynamic regime of the Boltzmann equation. As a
matter of fact, frames different than Landau’s and Eckart’s
have been already discussed and pursued in the literature,
see Refs. [71,95,96,127–130].
We substitute (16) in the Boltzmann equation to find

kμ∇μf
eq
k þ kμ∇μδfk

¼
Z
k0pp0

Wðpp0jkk0Þfeqk feqk0

�
δfp
feqp

þ δfp0

feqp0
−
δfk
feqk

−
δfk0

feqk0

�

þ
Z
k0pp0

Wðpp0jkk0Þðδfpδfp0 − δfkδfk0 Þ: ð18Þ

Up to this point, no approximations in the Boltzmann
dynamics were made. However, now we assume that the
deviations from equilibrium are small [125] and linearize
the equation above by neglecting24 the contribution from
terms that are quadratic in δfk. This gives

kμ∇μf
eq
k þ kμ∇μðfeqk ϕkÞ − feqk L½ϕk� ¼ 0; ð19Þ

where we defined ϕk ¼ δfk=f
eq
k and L is the linearized

collision operator

L½ϕk� ¼
Z
k0pp0

Wðpp0jkk0Þfeqk0 ðϕp þ ϕp0 − ϕk − ϕk0 Þ:

It will be useful for our analysis to know that the functions
f1; kμg span the kernel of this operator; i.e., L½1� ¼
L½kμ� ¼ 0 and that this operator is self-adjoint in the sense
that

Z
k
feqk hkL½zk� ¼

Z
k
feqk zkL½hk�

with hkðxÞ and zkðxÞ being arbitrary functions.25 Also, this
operator is nonpositive

Z
k
feqk ϕkL½ϕk� ≤ 0;

with the equality corresponding to the case where
ϕk ¼ f1; kμg. A more detailed discussion of the math-
ematical properties of L can be found, for instance, in
Ref. [121].

24This perturbative solution can be performed systematically
as follows. First, we introduce a book keeping parameter α on the
nonlinear term in (18) and then assume a power series behavior
for δfk ¼

P∞
n¼0 α

nδfðnÞk . The lowest order term in this expansion
gives Eq. (19).

25These functions are assumed to be such that
R
k f

eq
k hk andR

k f
eq
k zk are finite.
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Now our task is to solve Eq. (19) subject to the
conditions (17). This problem can be solved [118] by
considering integral moments of (19) with respect to the
tensorial basis kμ1…kμj (j ≥ 0); i.e.,

Z
k
kμ1…kμjfkμ∇μf

eq
k þ kμ∇μðfeqk ϕkÞ − feqk L½ϕk�g ¼ 0;

which leads to an infinite set of (coupled) differential
equations for the moments of the nonequilibrium correction
determined by ϕk. In this paper we truncate this set of
equations and consider only the cases where j ¼ 0, 1, 2.
This type of truncation is commonly used in the derivation
of hydrodynamics from the Boltzmann equation [22,118].
For a more systematic approach that includes the contri-
bution from higher order moments, we refer the reader
to Ref. [23].
Using that L is a self-adjoint operator, and the functions

f1; kμg are in its kernel, one can see that j ¼ 0 simply gives
the conservation law of particle number, ∇μJμ ¼ 0, while
j ¼ 1 implies the conservation of energy and momentum,
∇μTμν ¼ 0, with both Jμ and Tμν being constructed using
fk ¼ feqk ð1þ ϕkÞ. We now use the decomposition

kμkν ¼
�
uμuν þ Δμν

3

�
E2
k þ Ekuμkhνi þ Ekuνkhμi þ khμkνi

to show that the j ¼ 2 term can be divided into three
separate equations

Z
k
E2
k

�
feqk E2

k
DT
T2

þ kμ∇μðfeqk ϕkÞ− feqk L½ϕk�
�
¼ 0; ð20Þ

Z
k
Ekkhμi

�
feqk Ek

khνiDhνiT
T2

þkμ∇μðfeqk ϕkÞ−feqk L½ϕk�
�
¼0;

ð21Þ

and

Z
k
khαkβi

�
feqk

khμkνiσμν
T

þ kμ∇μðfeqk ϕkÞ − feqk L½ϕk�
�

¼ 0;

ð22Þ

where the shear tensor is σμν ¼ Δμν
αβ∇αuβ and Δμν

αβ ¼
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ=2 − ΔμνΔαβ=3 is the projection tensor

[50], and khμkνi ¼ Δμν
αβk

αkβ. For convenience, we have
introduced the Weyl derivative notation [102] DT ¼ DT þ
θT=3 and DhμiT ¼ TDuμ þ∇hμiT, with D ¼ uμ∇μ,
∇hμi ¼ Δμ

α∇α, and the expansion rate θ ¼ ∇μuμ. Further-
more, since μ=T is constant in a conformal fluid, no
gradients of this quantity appear when computing
kμ∇μf

eq
k in the equations above. Therefore, for convenience

we set the chemical potential μ ¼ 0 in the following.

We are primarily interested in the case where the
hydrodynamic fields are sufficiently slowly varying func-
tions of space and time, since this is the situation when the
hydrodynamic limit is expected to be a good approximation
to the underlying kinetic theory, i.e., when a gradient
expansion provides a good representation of the dynamics
of the system. Thus, only an approximate solution for ϕk
valid in this limit will be pursued. Since the source terms in
the equations above are already of first order in derivatives
of the hydrodynamic fields, ϕk must be of first order in
gradients at the lowest order in a derivative expansion. But
the term kμ∇μðfeqk ϕkÞ only contributes at second order.26

Therefore, kμ∇μðfeqk ϕkÞ can be omitted in Eqs. (20)–(22)
when determining ϕk to first order in gradients. In this case,
the general solution for ϕk, valid at first order in the
derivative expansion, can be written as follows:

ϕk ¼ ϕA
khμkνiσμν

T3
þ ϕB

E2
kDT
T4

þ ϕC
EkkhνiDhνiT

T4

þ ξþ v
Ek

T
þ vhμi

khμi

T
; ð23Þ

where ξ, v and vhμi parametrize the kernel of the collision
operator. Using Eqs. (20)–(22) one can show that ϕA, ϕB,
and ϕC are determined by the equations

ϕA

�
1

T8

Z
k
feqk khαkβiL½khμkνi�

�
σμν ¼

8

π2
σαβ; ð24Þ

ϕB

�
1

T8

Z
k
feqk E2

kL½E2
k�
�

¼ 60

π2
; ð25Þ

and

ϕC

�
1

T8

Z
k
feqk EkkhμiL½Ekkhνi�

�
DhνiT ¼ 20

π2
DhμiT; ð26Þ

where we used that

Z
k
En
kf

eq
k ¼ Tnþ2

ðnþ 1Þ!
2π2

and

Z
k
feqk khμkνikhαkβi ¼ 8T6

π2
Δμναβ:

Since L is nonpositive, the quantities ϕA, ϕB, and ϕC are
negative, and their specific values only depend on the
properties of the collision kernel. On the other hand,
the coefficients fξ; v; vhμig are fixed by our definition of
the hydrodynamic fields via the constraints in Eq. (17)
(and the corresponding results for ϕA, ϕB, and ϕC). Using
(23) in (17) we find

26Recall that, in a gradient expansion for a field ψ , both ∇2ψ
and ð∇ψÞ2 count as second order terms.
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ξ ¼ ϕB
DT
T2

ðmþ 2Þðnþ 2Þ;

v ¼ −ϕB
DT
T2

ðmþ nþ 5Þ; and

vhμi ¼ −ϕC
DhμiT
T2

ðrþ 4Þ:

One can see that these coefficients are nonzero for any
choice of frame.
Now let us determine the energy-momentum tensor of

the gas. A simple calculation reveals that

Tμν ¼
Z
k
kμkνfeqk ð1þ ϕkÞ ¼ ðϵþAÞ

�
uμuν þ Δμν

3

�

þ πμν þQhμiuν þQhνiuμ: ð27Þ

The nonequilibrium correction to the energy density is

A ¼
Z
k
E2
kf

eq
k ϕk ¼ 3χ

DT
T

with

χ ¼ ϕB
T3

π2
ðn − 2Þðm − 2Þ:

On the other hand, the heat flow in (27) is given by

Qhμi ¼
Z
k
Ekkhμif

eq
k ϕk ¼ λ

DhμiT
T

with

λ ¼ ϕC
4T3

π2
ð1 − rÞ:

Finally, the shear stress tensor is given by

πμν ¼
Z
k
khμkνifeqk ϕk ¼ −2ησμν;

where

η ¼ −ϕA
4T3

π2
ð28Þ

is the shear viscosity transport coefficient [125]. It is
interesting to notice that while η does not depend on our
choice of frame, the new coefficients χ and λ that appear in
our perturbative expansion certainly do. In fact, even their
sign can change as different choices in (17) are made. For
instance, in the Landau frame n ¼ 2,m ¼ r ¼ 1, and, thus,
χ ¼ λ ¼ 0. On the other hand, for Eckart’s χ ¼ 0, but
λ ≠ 0, and there is nonzero heat flow.

Another property of the system that can be easily
computed is the entropy production. Using the general
expression (23) in Eq. (12), we keep the lowest order terms
in the expansion to find

∇μSμ ¼ −
Z
k
feqk ϕkL½ϕk� ¼

2η

T
σμνσ

μν − ϕB
60

π2
ðDTÞ2

− ϕC
20

π2
DhμiTDhμiT;

which is non-negative since ϕB and ϕC are negative. We
note that the production of entropy does not depend on
(17), being thus independent on the choice of frame.
Now we have to specify the interactions in the collision

kernel to determine ϕA, ϕB, and ϕC. For simplicity, in this
paper we use the simple conformal gas defined in Eq. (15).
Using the results from [122,123,125] in Eqs. (24)–(26),
standard calculations give

ϕA ¼ −
3π2

10σ0
; ϕB ¼ −

15π2

2σ0
; and ϕC ¼ −

5π2

2σ0
:

One can show that for this gas η ¼ 6T3=ð5σ0Þ, λ=η ¼
25ðr − 1Þ=3, and χ=η ¼ −25ðn − 2Þðm − 2Þ=4. Given that
positive values for these coefficients are preferred accord-
ing to the well-posedness, causality, and stability results
derived in Secs. IV and V, one can see that frames where
r > 1 and n < 2, m > 2 provide a suitable definition of the
hydrodynamic fields since in this case the propagation of
energy and momentum is causal and stable. A possible
choice of frame would be, for instance, n ¼ 0, m ¼ 3, and
r ¼ 2 which gives values for λ and χ that satisfy the
conditions established for causality and stability of Secs. IV
and V. In terms of the following moments of fk:

ρμ1…μj ¼
Z
k
kμ1…kμjðfeqk þ δfkÞ;

the choice frame mentioned above corresponds to setting

ρ ¼ ρeq and ρμνλuνuλ ¼ ρeqμνλu
νuλ;

where ρeq and ρeqμνλ are computed using the equilibrium
distribution. Therefore, we see that causality and stability
can be obtained in viscous relativistic hydrodynamics from
a derivative expansion as long as a judicious choice of
frame involving the definition of hydrodynamic fields in
feqk is made.

VII. APPLICATIONS

In this section we initiate an investigation of the
immediate applications of the theory discussed in this
paper. We focus on problems of relevance to high energy
nuclear physics, more specifically the space-time evolution
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of the quark-gluon plasma formed in heavy ion collisions,
where the conformal fluid approximation has been already
used [6,30]. We solve our equations of motion for fluids
undergoing Bjorken and Gubser flows in VII A and VII B,
respectively, where the flow velocity is completely deter-
mined by symmetry arguments. A discussion about how to
set up the initial value problem in more general situations is
presented in VII C.

A. Hydrodynamic attractor in Bjorken flow

Motivated by the hydrodynamic studies of the quark-
gluon plasma formed in heavy ion collisions, we first
consider the case of the Bjorken flow [131] where uμ ¼
ð1; 0; 0; 0Þ in Milne coordinates defined as xμ ¼ ðτ; x; y; ςÞ,
with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ς ¼ tanh−1ðz=tÞ. This configuration

corresponds to a fluid rapidly expanding in the longitudinal
z direction (being homogeneous in the xy plane), and the
only unknown is ϵ ¼ ϵðτÞ or equivalently T ¼ TðτÞ, which
is the solution of uν∇μTμν ¼ 0 [we note that the term with λ
in (4) does not contribute to Bjorken flow dynamics].
The equation for the temperature TðτÞ is

τχ̄
∂2
τT
T

þ2τχ̄

�∂τT
T

�
2

þ7

3
χ̄
∂τT
T

þ χ̄

9τ
þ τ∂τT−

4

9

η̄

τ
þT
3
¼ 0;

ð29Þ

where we used that ∇μuμ ¼ 1=τ and σμνσ
μν ¼ 2=ð3τ2Þ. If

χ ¼ 0, (29) describes the well-known NS equations for
Bjorken flow [132]. Equation (29) can be rewritten in a
clearer form by defining the variables w ¼ τT and f ¼
1þ τ∂τT=T [133,134], leading to

χ̄wfðwÞ dfðwÞ
dw

þ 3χ̄fðwÞ2 þ fðwÞ
�
w −

14

3
χ̄

�

þ 16χ̄

9
−
4η̄

9
−
2w
3

¼ 0: ð30Þ

This equation is very similar to the one found in the case of
Israel-Stewart theory first reported in [134] and, as such, it
shares the same qualitative features. In this system, the
Knudsen number (i.e., the ratio between micro and macro-
scopic length scales) KN ∝ 1=w, and, thus, the NS limit
should be recovered in the large w (i.e., large τ) regime.
This can be seen by considering the formal large w series
solution fðwÞ ¼ P∞

n¼0 fnw
−n for (30), which describes the

gradient expansion series around equilibrium, and leads to
the following equation for its coefficients:

fnþ1 ¼ χ̄
Xn
m¼0

ðn −m − 3Þfn−mfm þ 14

3
χ̄fn ð31Þ

for n > 1, while f0 ¼ 2=3 and f1 ¼ 4η̄=9. The exact result
for NS corresponds to truncating the infinite series as
f0 þ f1=w. However, such a truncation leads to acausal
equations, which can only be resolved by properly resum-
ming the series. In fact, the series coefficients diverge as
fn ∼ n! for large n, as shown in Fig. 2. We remark that the
divergence of the large τ expansion in Bjorken flow was
previously found in holography [135,136], kinetic theory
[137,138], as well as in hydrodynamic theories involving
extended variables [134,139–141] (for a review see [142]).
Connections with resurgence theory have been investigated
in [134,136,139,140].
In general, one expects that such a result indicates that

new properties of the solutions of the equations of motion,
which do not appear at any finite order in the series
expansion, may emerge after resummation. As a matter
of fact, linear disturbances around the series solution decay
exponentially at large times [134] on a time scale controlled
by the nonhydrodynamic mode that appears when χ̄ ≠ 0,
which indicates the presence of a nonequilibrium structure
called the hydrodynamic attractor. This is confirmed
numerically in Fig. 3 by investigating the behavior of
the solutions of (30) generated using different initial
conditions for fðwÞ. As noticed in [134], the attractor
solution can be determined using the analogous of the slow-
roll expansion in cosmology [143], which here corresponds
to setting df=dw → 0 (the red line in Fig. 3 shows the result
of this procedure taking into account first order correc-
tions). One can see that already at very short times the
system rapidly “erases” its memory of the initial conditions
and converges to the hydrodynamic attractor (in solid red)
before it reaches equilibrium (where f → 2=3). We also
show the NS solution where fðwÞ ¼ 2=3þ 4η̄=ð9wÞ for
comparison.
We stress that in our case the only dynamic variables of

the system are the original hydrodynamic fields, and, thus,
the presence of a hydrodynamic attractor, even in this
case, suggests that this may be a generic feature of (causal)
viscous relativistic fluids (at least in the case of
Bjorken flow).

FIG. 2. jfnj1=n as a function of n, computed using (31), for
η=s ¼ 0.08 and χ ¼ 4η.
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B. Gubser flow

Another important type of (conformal) hydrodynamic
flow employed in the study of simple models of heavy-ion
collisions is the so-called Gubser flow [144]. In this case,
the flow is invariant under SOð3Þ ⊗ SOð1; 1Þ ⊗ Z2, with
the SOð3Þ being a particular subgroup of the SOð4; 2Þ
conformal group which includes the symmetry of the
solutions under rotations around the z axis and two
operations constructed using special conformal transfor-
mations that replace the translation invariance in the xy
plane present in Bjorken flow. Full analytical solutions for
the ideal fluid and NS approximations were derived in
[144] and the geometrical interpretation of SOð3Þ ⊗
SOð1; 1Þ ⊗ Z2 symmetry after Weyl rescaling was ex-
plained in [145].
Reference [146] went beyond the NS limit and studied

the case of a fluid described by the conformal IS equations
undergoing Gubser flow. The semianalytical solutions
obtained in [146] have since then become the standard
test of the accuracy of numerical schemes used in the large
scale codes that realistically model the hydrodynamic
evolution of the quark-gluon plasma [37]. Moreover, they
have also motivated a series of studies on the emergence of
hydrodynamic behavior in rapidly expanding fluids
described by kinetic theory models [119,120,122,147,148].
One interesting aspect of the NS solution for Gubser

flow is that there are regions in space-time where the
temperature becomes negative as long as η=s > 0.
Reference [144] argued that in these regions the gradients
are so large that the NS equations do not apply, and it was
observed in [146] that the higher order resummed dynamics
included in IS theory (and kinetic theory [119,120])
resolved this issue guaranteeing that T remained posi-
tive-definite. In this section we show that the same occurs
in the new theory in (4), which provides a powerful
consistency test of the formalism developed here.

The symmetry pattern that defines Gubser flow exactly
determines [144] the flow velocity to be

uμ ¼ ðuτðτ; rÞ; urðτ; rÞ; 0; 0Þ

with

uτ ¼ − cosh

�
tanh−1

�
2τrq

1þ q2τ2 þ q2r2

��

ur ¼ sinh

�
tanh−1

�
2τrq

1þ q2τ2 þ q2r2

��
;

where we used Milne coordinates xμ ¼ ðτ; r;ϕ; ςÞ, with
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ tan−1ðy=xÞ. Above, q is an arbi-

trary energy scale that describes the spatial extent of the
solutions in the xy plane (we note that the Bjorken solution
is recovered in limit q → 0). Without loss of generality, we
set q ¼ 1 fm−1 [146]. Just as it happened in the Bjorken
flow case, since uμ is already known (and the momentum
part of the conservation laws is automatically satisfied) the
only quantity left to characterize the hydrodynamic sol-
ution in our theory is T ¼ Tðτ; rÞ, which is obtained as a
solution of uν∇μTμν ¼ 0. In this case, the nonlinear second
order partial differential equation for T depends on ðτ; rÞ,
which makes the problem considerably more complicated
than the Bjorken flow case.
However, the underlying conformal invariance of the

equations of motion allows one to perform a Weyl trans-
formation of the metric and rephrase this complicated flow
pattern in terms of a locally static flow in the curved space-
time dS3 ⊗ R [145], where dS3 denotes the three-
dimensional de Sitter space [117]. In fact, starting with
the line element written in Milne coordinates ds2 ¼ −dτ2þ
dr2 þ r2dϕ2 þ τ2dς2, one may rescale the flat space-time
metric ds2 → ds2=τ2 to obtain a metric of dS3 ⊗ R, which
may be written in global coordinates as dŝ2 ¼ −dρ2þ
cosh2 ρdθ2 þ sin2 θ cosh2 ρdϕ2 þ dς2, where

sinh ρ ¼ −
1 − τ2 þ r2

2τ
; tan θ ¼ 2r

1þ τ2 − r2
:

After this procedure, the fluid is at rest ûμ ¼ ð−1; 0; 0; 0Þ
and the temperature T̂ ¼ T̂ðρÞ, which now obeys a second
order nonlinear ODE that can be easily solved. Once that is
done, a simple Weyl transformation gives Tðτ; rÞ ¼
T̂ðρðτ; rÞÞ=τ [145]. This approach to solve the conformal
hydrodynamic equations was applied in [149] to obtain
axisymmetric exact solutions with nonzero vorticity, while
other flow profiles were systematically developed in [150].
In order to compare to the IS case studied in [146], it is

convenient to write our second order equation of motion
for T̂ in dS3 ⊗ R as a set of coupled 1st order differential
equations

FIG. 3. Hydrodynamic attractor solution for the causal tensor
(4) with η=s ¼ 0.08 and χ ¼ 4η. The black dashed lines represent
solutions of (30) with different initial conditions, and the solid red
line corresponds to the attractor solution. The NS solution is
given by the purple dotted-dashed curve, while the dotted blue
line denotes the equilibrium limit.
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1

T̂

dT̂
dρ

þ 2

3
tanh ρ ¼ F̂ ðρÞ;

χ̄
dF̂
dρ

þ 3χ̄F̂ 2 þ 2

3
χ̄ F̂ tanh ρþ T̂ F̂ −

4

9
η̄ðtanh ρÞ2 ¼ 0;

ð32Þ

where we used that in dS3 ⊗ R the expansion rate is
∇μûμ ¼ 2 tanh ρ, ûλ∇λûμ ¼ 0, and the only nonzero com-

ponents of the shear tensor are σ̂ςς ¼ −2 tanh ρ=3, σ̂ϕϕ ¼
σ̂θθ ¼ tanh ρ=3. One can appreciate the similarity between
(32) and the IS equations (11) and (12) obtained in [146].
The NS limit (χ̄ ¼ 0) gives the exact solution [144]

T̂NSðρÞ¼
T0

cosh2=3ρ
þ 4

27
η̄
sinh3ρ

cosh2=3ρ2F1

�
3

2
;
7

6
;
5

2
;−sinh2ρ

�
;

ð33Þ
where 2F1 is a hypergeometric function and T0 is a constant
that characterizes the solution at ρ ¼ 0. The equation above
shows that T̂ is positive-definite in the ideal fluid limit
(η̄ ¼ 0) but for NS limρ→�∞T̂NSðρÞ ¼ �2η̄=3 [144], which
implies that for any time τ there is an r for which the
temperature turns negative (for any value of η > 0). This
pathology of NS does not occur in the solution obtained
from Eq. (32), as illustrated in Fig. 4. In this plot we used
η̄ ¼ 0.2, χ ¼ 4η, T0 ¼ 1.2 and F̂ ð0Þ ¼ 0, to facilitate the
comparison with the results obtained for IS theory in [146].
The red line denotes our numerical solution, the black
dashed line corresponds to the ideal fluid limit and the NS
solution, which becomes negative at a sufficiently large
negative ρ, is shown in blue. One can see that our solution
for the temperature is positive-definite, taking values
strikingly similar to the IS solution reported in Fig. 1 of
Ref. [146] (in which η̄ ¼ 0.2 was also used). Also, just as it
happened in the case of IS theory [146], the temperature

profile found in our causal theory is slightly above the one
corresponding to the ideal fluid solution. We show in Fig. 5
the time evolution of the new solution as a function of the
transverse radius r, using the same parameters employed in
Fig. 4. The fluid rapidly expands in the transverse direction
while also expanding in the longitudinal z direction,
similarly to what occurs with the IS solution [146]. We
remark that hydrodynamic attractor solutions can also be
investigated in Gubser flow, as shown in Refs. [151,152].
Since our equations of motion (32) are very similar to the IS
equations for Gubser flow [146], we expect that hydro-
dynamic attractor behavior will also be present in our case.
We leave such a study for future work.

C. Initial conditions

The equations of motion derived from (4) are second order
evolution equations. Their initial value formulation, there-
fore, requires a complete knowledge of eight quantities

uijt¼0; ϵjt¼0;∇0uijt¼0; and ∇0ϵjt¼0; ð34Þ

where we assume to be working locally in coordinates
ðx0; xiÞ ¼ ðt; xiÞ such that initial data are given on the
hypersurface ft ¼ 0g. Note that the u0 component and its
time derivative at t ¼ 0 are obtained from the normaliza-
tion uμuμ ¼ −1. For a comparison, we note that the
relativistic NS equations require the knowledge of the
same quantities as above, with the exception of ∇0ϵjt¼0

which is only needed in our formulation.
Clearly, the choice of initial data depends on the

particular problem at hand. In the study of the quark-gluon
plasma, one is often given an energy-momentum tensor
T μν at some initial time,27 computed for instance using theFIG. 4. Temperature profile in dS3 ⊗ R as a function of de

Sitter time ρ. The red line is the solution of (32), the blue dotted-
dashed line denotes the NS solution (33), and the ideal fluid case
is shown in black (dashed). In this plot, η̄ ¼ 0.2, χ̄ ¼ 4η,
and T0 ¼ 1.2.

FIG. 5. Dependence of the temperature with the transverse

radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, evaluated at different Milne times τ ¼ 1, 2,

3 fm, for the viscous fluid defined by (4) undergoing Gubser flow.
The fluid also expands in the z direction (not shown). In this plot,
η̄ ¼ 0.2, χ ¼ 4η, and T0 ¼ 1.2.

27As above, here we denote the initial time as t ¼ 0. However,
we note that in heavy-ion applications one initializes hydro-
dynamics at some nonzero initial Bjorken time τ0.
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IP-Glasma model [153], that is expected to be matched to
the corresponding energy-momentum tensor of the fluid. In
principle, this matching can always be performed in IS-like
approaches since the ten independent quantities in T μν can
be directly mapped into the ten dynamical d.o.f. of IS
theory defined, e.g., in the Landau frame. However, it is
important to remark that this is not free from problems. For
instance, the initial state physics contained in T μν in the
case of the quark-gluon plasma, which for instance involves
solving the classical Yang-Mills equations in the case of IP-
Glasma, may be such that the solution of the Landau
condition uμT μν ¼ −Euν at the initial time gives regions in
space where E is not positive-definite [92]. Also, even if
that is not the case, the deviations from local equilibrium at
the initial time may be so large that the extracted πμν of the
fluid is larger than the equilibrium pressure, which implies
that the system is already outside the regime of applicability
of the IS equations [22] and higher order corrections
become necessary. Furthermore, in extremely rapidly
expanding systems depending on the size of the bulk
viscosity, it is possible that the bulk scalar Π in IS theory
is such that the local total pressure changes sign, which
leads to phenomenon of relativistic cavitation [154,155].
This possibility was already found in realistic simulations
of heavy-ion collisions in [156]. Moreover, since there is no
proof of causality and well-posedness for these equations in
the nonlinear regime, it is not known if the spacetime
evolution of the fluid described by these equations is
always well behaved in the case highly inhomogeneous
initial conditions. Therefore, even for the case of IS-like
equations, it is not guaranteed that their use makes sense in
the extreme conditions that may occur in some heavy-ion
collision events (such as in the case of small collision
systems formed in proton-nucleus or even proton-proton
collisions). Thus, we limit our discussion to consider the
case where the system is close to local equilibrium and such
issues do not appear.
If the system is close to equilibrium (though still non-

linear), it becomes then again meaningful to match the
initial T μν to a fluid dynamic description. In this case, one
can approach this problem considering different levels of
approximation. Assuming that the eigenvalue problem
wμT μν ¼ −αwν, with α > 0 and wμwμ ¼ −1 can be solved
at the initial time, the first approximation consists in
assuming that the dynamics of the system can be described
by the ideal fluid equations of motion with initial con-
ditions given by ϵjt¼0 ¼ α and uijt¼0 ¼ wi. This approxi-
mation may be locally improved by assuming that the
system evolves according to viscous fluid dynamics.
However, besides the problems with causality and stability,
the NS equations contain less information than the general
initial T μν, and, thus, information about the initial state is
necessarily lost when setting up the initial conditions for ϵ,
ui, and ∇0ui. On the other hand, as remarked above the
initial values of the fields in the conformal IS equations can

be directly matched to the initial (traceless) T μν, though in
this case there is no way to know a priori if causality
violations (and other theoretical issues) may appear in the
nonlinear regime.
In comparison to the NS equations, the new tensor

derived in this paper can in principle better detail the system
in the initial state since the number of input variables equals
8 in comparison to the 9 present in the most general T μν

(assuming conformal invariance). However, differently
than IS theory, in our case some amount of information
about the initial condition is necessarily lost though
causality and well-posedness have been proven in the
nonlinear regime. Given that currently the majority of
the simulations of the quark-gluon plasma employing IS
theory do not fully take into account all the possible
information in the initial T μν computed from quantum
chromodynamics, we believe that it is important to inves-
tigate which properties are more important for the specific
problems at hand by comparing the results for the evolution
of Tμν obtained using IS and the new theory proposed in
this paper.
Such a comparison could be meaningfully performed as

follows. Let us first assume that T μν models the initial
energy-momentum tensor of the quark-gluon plasma but
this system is not very far from equilibrium, being thus
close to the NS regime.28 One solves wμT μν ¼ −αwν and
uses these quantities to set ϵjt¼0 ¼ α and uijt¼0 ¼ wi in our
theory and, correspondingly, Ejt¼0 ¼ α and uijt¼0 ¼ wi in
conformal IS theory (where E is as in Sec. II). Using NS
theory as guidance, we set Dμϵjt¼0 ¼ 0 in our equations.
Projecting this condition onto the flow one finds

∇0ϵjt¼0 ¼
4ϵu0

3þ 2ū2

�
ulum∇lum
1þ ū2

−∇lul −
ul∇lϵ

2ϵ

�
;

where ū2 ¼ ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2. The remaining condi-
tions then give

u0∇0ujjt¼0 ¼
�
u20∇lul − ulum∇lum −

ul∇lϵ

4ϵ

�
uj

3þ 2ū2

− ul∇luj −
∇jϵ

4ϵ
:

This sets up the initial value problem for our tensor. At the
same time, we also use this last equation to provide the

28This statement can be made more formal in the sense of
Geroch’s work in Ref. [12]. We note that both IS equations and
ours can have the NS equations as a limit. For the former, this
limit is well understood [6] while in the case of our tensor (4) this
occurs when the contribution from the terms A ¼ χDϵ=ðϵþ PÞ
and Qμ ¼ λDhμiϵ=ðϵþ PÞ is neglected in the equations of
motion.
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remaining initial condition needed for NS. On the other
hand, one can use the equations above to determine all the
components of σμνjt¼0, which can then be used to set
πμνjt¼0 in IS theory. Therefore, in this case all the different
descriptions, i.e., NS, IS, and ours, would have the same
initial Tμνjt¼0. One could then compare the solutions of the
equations of motion for these different theories under
heavy-ion like conditions. Unfortunately, such a study
requires solving the equations of motion in situations that
are significantly more complex than those presented in VII
A and VII B. We intend to investigate this interesting
problem in our future work.

VIII. LIMITATIONS, OPEN QUESTIONS,
AND DISCUSSIONS

Given the novelty of (4), it is natural that many questions
remain open. In this section we will briefly discuss some of
them, tying the discussion with limitations and potential
shortcomings of the theory here presented.

A. Generalizations of Theorems 1 and 2
and other fluid theories

Theorems 1 and 2 establish well-posedness of Einstein’s
equations coupled to (4) in Gevrey spaces. Such spaces are
commonly used in the study of fluid dynamic equations
(see, e.g., [104,157–160] and references therein), and they
have been used in the study of Einstein’s equations before
[10,161,162]. In fact, in some circumstances, Einstein’s
equations coupled to ideal magnetohydrodynamics appear
to have been shown to be well-posed only in the Gevrey
spaces [10,163].29 Nevertheless, it would be important to
establish a well-posedness result in larger function spaces,
not only for the sake of generality but also because many
important questions, such as those concerning the long-
time dynamics (see Sec. VIII B) are better posed in other
function spaces such as Sobolev spaces (see [165] for an
example in the context of Einstein’s equations). The main
difficulty to generalize Theorems 1 and 2 to Sobolev spaces
is that the equations derived from (4) are only weakly
hyperbolic (for a1 ≥ 4 a2 ≥

3a1
a1−1

; it is not clear whether the
equations are hyperbolic in any sense if these conditions do
not hold). This is manifest by the presence of repeated roots
in the characteristic determinant. Absent further structural
properties, weakly hyperbolic systems are not, in general,
well-posed in Sobolev spaces [78]. A more refined analy-
sis, therefore, has to be carried out in order to generalize our
Theorems to Sobolev spaces. This will be presented in a
future work, since the proof is quite technical (relying on
delicate resolvent estimates and an in-depth study of the

regularity properties of C0 semigroups in Banach spaces)
and thus is beyond the scope of this work.
Generalizations of Theorems 1 and 2 notwithstanding,

one should contrast our results with what is currently
known about the IS and resummed BRSSS theories, for
which no analogues of such theorems are available, even in
spaces more restrictive than Gevrey spaces such as the
space of analytic functions. It is also interesting to note the
IS and resummed BRSSS theories posses multiple char-
acteristics [24], which would render the equations of
motion weakly hyperbolic at best (unless, of course, the
equations are rewritten in terms of new “better” variables).
Thus, it is likely that for such theories results beyond
Gevrey spaces, if available at all, will be difficult to be
obtained.
The comments of the previous paragraph should by no

means minimize the importance of the IS and ressumed
BRSSS theories, given their wide use in the study of
relativistic fluids with viscosity. It remains an extremely
important open problem to find reasonable conditions that
guarantee that these theories are well-posed and causal in
the nonlinear regime, both in Minkowski space and when
dynamically coupled to gravity. Unfortunately, these are
very difficult questions. The characteristic determinant of
the IS theory seems more complicated than the one we have
here, and we were so far unable to find any structure that
would allow an application of techniques similar to the
ones employed here. The situation becomes even more
complicated if the second order terms proposed by [6,
Eq. (3.11)] are included, as these terms turn the causality
and stability analysis significantly more complicated. The
first reason for this is computational: the equations will be
of third order in derivatives, increasing the complexity of
the system’s characteristics. The second reason is struc-
tural. The coefficients of the principal part will now depend
on derivatives of the fields. In our case, the coefficients of
the principal part depend on the fields but not on its
derivatives (e.g., terms of the form ηðϵÞgμν∂2

μνuα and
uμuν∂2

μνϵ), where ∂μ are coordinate partial derivatives;
thus, the system characteristics can be understood solely
in terms of the intrinsic properties of the fields, i.e., the facts
that g is a Lorentzian metric, u is timelike, and ϵ > 0. With
a few exceptions (e.g., the property that the acceleration is
orthogonal to the velocity), this is no longer the case when
the coefficients depend on derivatives of the fields, and the
geometric and physical meaning of the system’s character-
istics become much more obscure. Therefore, a systematic
investigation of well-posedness and causality (in the full
nonlinear sense meant here) is extremely challenging when
the second order gradient terms proposed by [6, Eq. (3.11)]
are included.
We also mention that an important problem for appli-

cations in astrophysics is to understand the linear stability
of fluid theories beyond the Cowling approximation, not
only for (4) but for other fluid theories as well.

29Although probably the formulation of [164] would carry
over to the coupling with Einstein’s equations. A proof of this
statement, however, does not seem to be available in the literature.

BEMFICA, DISCONZI, and NORONHA PHYS. REV. D 98, 104064 (2018)

104064-20



B. Energy conditions and positivity of ϵ

Because in our tensor Tμνuμuν¼ϵþχ∇μuμþ
3χ
4ϵu

μ∇μϵ¼ϵþA, the weak energy condition uμuνTμν ≥ 0

[11] can be violated for sufficiently large dissipative
contributions. This is not so much a limitation of (4) but
rather a consequence of the assumptions of the gradient
expansion employed to derive (4) in Sec. VI, as the theory
is not supposed to be valid for very large deviations from
local equilibrium. In fact, in applications (including
numerical simulations) keeping track of the positivity of
Tμνuμuν may provide a criterion to determine when the
limit of validity of the theory has been crossed. This can be
useful because, while we know the theory to be valid only
for small gradients, in practice it is not always evident when
its regime of applicability has been reached. Note that by
continuity, we know that Tμνuμuν will remain positive for
some time interval if positive initially. Therefore, whether
or not the weak energy condition is in fact violated depends
on the long time behavior of the system. The latter, in turn,
depends on particular features of specific models, such as
the values of χ=η and λ=η or the initial conditions chosen
for the system.
Another question tied to the long term dynamics is that

of the positivity of ϵ. Again by continuity, ϵ will be strictly
greater than zero if so initially. But the equations of motion
degenerate if ϵ ¼ 0, in which case our causality and well-
posedness results no longer apply. Such difficulties caused
by ϵ ¼ 0, however, are no different than what happens
already in other fluid theories. For the nonrelativistic Euler
equations, one has ∂tvi þ vj∇jvi þ 1

ρ∇ip ¼ 0, where vi, ρ,
and p are the fluid’s velocity, density, and pressure,
respectively. We see that ρ > 0 is needed; and if one writes
the equations as ρð∂tvi þ vj∇jviÞ þ∇ip ¼ 0, the situation
is hardly better, since well-posedness, among other tradi-
tional results [166], no longer applies when ρ ¼ 0 because
the equation degenerates. The same problem also arises in
the nonrelativistic Navier-Stokes equations when the den-
sity vanishes, and, in fact, in the relativistic NS, IS, and
resummed BRSSS theories as well. To see this, note that
uμ∇νTν

μ ¼ 0 can be written, for all such theories and ours,
as

uμ∇μϵþ
4

3
ϵ∇μuμ þ V ¼ 0; ð35Þ

where V represents the viscous contributions, and we used
PðϵÞ ¼ 1

3
ϵ. Assume that we know ϵ to be positive at certain

time that we can take as t ¼ 0. By continuity30 ϵ will be
positive for some time interval ½0;TÞ. The question of
whether ϵ remains positive after T can be reduced to
determine whether

lim
t→T−

ϵðt; xÞ≡ ϵTðxÞ > 0 ð36Þ

for all x. For, if this is the case, we can then take ϵT as initial
data for the equations on t ¼ T. Solving the corresponding
initial value problem31 with ϵT as initial condition, we then
obtain that the solution now exists on a larger interval
½0;Tþ T0Þ, T0 > 0; again by continuity (and shrinking T0 a
bit if necessary) we conclude that ϵ is positive on
½0;Tþ T0Þ. We can now repeat the argument to obtain
positivity after Tþ T0 and so on.
Thus, we need to obtain (36) to show that ϵ will remain

positive. Given ðt; xÞ, t < T, we can integrate (35) along an
integral curve γ of uμ connecting ðt; xÞ to some ð0; x0Þ,
yielding

ϵðt; xÞ ¼ ϵð0; x0Þe−
4
3

R
γ
∇μuμ−

R
γ
V
ϵ : ð37Þ

In producing this identity we had to use that ϵ > 0, which
is the case for t < T. Consider first the case without
viscosity; i.e., V ¼ 0. Then (36) clearly holds unless
limt→T−

R
γ ∇μuμ ¼ ∞, i.e., unless ∇μuμ becomes singular.

However, the same argument does not work when V ≠ 0
due to the presence of ϵ on the rhs of (37). Indeed, in order
to conclude (36) we need limt→T−

R
γ
V
ϵ to remain finite. This

limit depends on the form of V. In particular, it will involve
(for a conformal fluid) terms in η

ϵ ∝ ϵ−
1
4. Thus, for

limt→T−
R
γ
V
ϵ to be finite we need ϵ to remain positive in

the limit t → T−, which is what we are trying to prove to
begin with.
The above shows that the mechanism that enforces ϵ to

remain positive in an ideal fluid no longer holds when
viscosity is present. Moreover, if ϵ reaches the value zero,
there is no a priori reason why it could not become negative
(assuming that we can guarantee solutions to still exist if
ϵ ¼ 0, see below), thus violating the weak energy con-
dition. Note that, as stressed, this is a potential issue in the
NS, IS, and BRSSS theories alike.
Upon closer inspection, it is not surprising that many

difficulties arise when the fluid energy density vanishes
since zero energy/matter-density corresponds to a vacuum
region. Thus, ϵ ¼ 0 marks an interface where the fluid is
separated from the vacuum. A typical scenario where one
has such an interface is in the study of stars, where the star
is modeled as a fluid body and the pressure vanishes at the
boundary of the star. In fact, in our case our equation of
state would imply also that ϵ ¼ 0. More generally, for
gaseous stars, where the equation of state is such that ϵ ¼ 0
whenever the pressure vanishes [167], we see that the
density will vanish on the boundary of the star as well. The
main difficulty in this case is that the interface ϵ ¼ 0 is not

30Assuming, say, that a solution exists and is continuous.

31Assuming a well-posedness result to be available. Thus, even
to discuss whether ϵ remains positive, we see that a well-
posedness theorem seems to be needed.
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prescribed but rather it is dynamic; i.e., it changes with
the motion of the fluid. Unfortunately, establishing well-
posedness and causality in such cases is extremely difficult.
Even for the nonrelativistic Euler equations the problem
has been solved only over the last decade or so [168–173],
and it remains largely open for the equations of relativistic
ideal fluids32 [167,174,175].
It is, of course, possible that ϵ remains strictly greater

than zero if initially so, in which case the issues of previous
paragraphs do not arise. But, as mentioned, whether or not
ϵ remains positive requires understanding the long term
dynamics. The takeaway of this discussion is that to answer
whether or not certain features (positivity of ϵ, energy
conditions, etc.) persist for longer times we need to go
beyond well-posedness results and understand problems
such as the potential formation of singularities or degen-
eracy of the equations, how large can the interval of
existence be, and so on. Such questions, albeit very
important, are typically very challenging for nonlinear
equations (in fact, they are intimately tied to the problem
of global existence briefly mentioned in Sec. I) and are
beyond the scope of this work.
The difficulties discussed above essentially boil down to

the question of whether properties that hold initially persist
for long times, e.g., whether ϵ > 0 or the weak energy
condition remains valid for a long time interval (beyond
what is valid by a simple continuity argument). The
challenges in answering these questions reflect more on
the difficulties common to the analysis of nonlinear partial
differential equations than limitations of our model per se.
In fact, as discussed above, similar difficulties are present in
both the IS and BRSSS theories.

C. The nonconformal case

Another important question is whether it is possible to
generalize the ideas used to derive (4) to construct more
general causal and stable energy-momentum tensors,
including theories with derivatives higher than second
order, theories with more conserved charges, and the
nonconformal case. The short answer to most of these
questions is yes. The strategy leading to (4), namely, start
with kinetic theory but leave the choice of frame [i.e., the
choice ofm, n, and r in (17)] general, can be reproduced for
other types of gases. The main difficulty now is that we will
have a larger number of transport coefficients and a more
complicated equation of state. Finding conditions for well-
posedness, causality, and stability will then require deter-
mining substantially more complex relations among these

quantities. Moreover, such relations must be compatible
with the choices of hydrodynamic frames allowed by
different values of m, n, and r.
Going beyond kinetic theory, it would be interesting to

investigate how (4) may be derived using holographic
techniques. In fact, it is known how to obtain the BRSSS
equations (and the corresponding nonconformal generali-
zation) from the fluid/gravity duality [97], and it is possible
that modifications of this approach can be devised to
obtain (4).

D. Choice of frames

A crucial element in the fluid theory introduced here that
was essential for causality and stability (and also for the
possibility of extending our results to nonconformal the-
ories as just mentioned) is the fact that we have not adopted
either the Landau or Eckart frame. In essence, our phi-
losophy is that the fundamental principle of causality
should determine what frames are physically meaningful,
and not the other way around.
Even if in practice causality and stability are determined

a posteriori, i.e., one establishes conditions guaranteeing
these properties and then verify that they are compatible
with the choices given by (17), this would not have been
possible had we imposed Landau or Eckart’s frames at the
beginning (without introducing new dynamic d.o.f.). In this
regard, it is interesting to notice that the causal theories of
[51–53] do not use Landau or Eckart’s frames either.
In fact, any predetermined choice of frame at the beginning
would probably prevent us from establishing causality
for the full nonlinear system of equations (i.e., fluid+
Einstein’s) considered here.
We showed in this paper that the theory in (4) provides a

causal generalization of conformal NS theory. As an
effective theory, our construction is rigorously well defined
in the sense that it is causal and stable, though admittedly
not accurate in the ultraviolet (as it must be the case in any
effective theory at sufficiently large energy scales). While
we considered the more general case where λ and χ are
distinct, in practical applications it may be more convenient
to assume these quantities to be the same. For instance,
the choice λ ¼ χ ¼ 4η would satisfy our causality, well-
posedness, and stability conditions. In this case, the only
free parameter needed to determine dissipative effects
would be the value of η=s, just as in conformal NS theory.

IX. CONCLUSIONS

In this manuscript, we have presented what is, to the best
of our knowledge, the first example of a viscous relativistic
fluid that is causal, stable, well-posed (in the nonlinear
regime with or without dynamic coupling to gravity), that is
derivable from kinetic theory and as such obeys the second
law of thermodynamics, and at the same time producing
meaningful physical results in widely used test models.

32When ϵ is allowed to vanish, the relativistic Euler equations
degenerate and standard well-posedness results [7] no longer
apply. As just showed, for an ideal fluid ϵ will remain positive if
initially so (absent singularities). Thus, for ideal fluids we only
have ϵ ¼ 0 if the initial data are chosen with regions of zero
energy density. But, as remarked, this situation is important in the
study of stellar evolution and hence needs to be addressed.
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The equations of motion involve only the hydrodynamic
fields and are simpler than those from extended irreversible
thermodynamics, including IS theory. We have solved
numerically the equations of motion for the case of
Bjorken flow and found the presence of an out-of-equi-
librium hydrodynamic attractor. Causality was identified
here as the root behind the resummation present in the
dispersion relations obtained from the linear stability
analysis and also in the hydrodynamic attractor of the
(fully nonlinear) Bjorken flow solution. We also inves-
tigated the case of Gubser flow, where our approach was
shown to also lead to meaningful results by resolving the
negative temperature problem found in NS equations in this
case. Further properties were also discussed together with
some of the limitations and open questions surrounding this
theory, and we briefly pointed out how the general
principles here employed can be used to construct causal
and stable theories beyond the conformal case, which may
be later used in numerical simulations of astrophysical
phenomena such as binary neutron-star mergers.
Our work emphasizes the importance of critically ana-

lyzing the most basic assumptions involved in current
theories of relativistic fluid dynamics. As mentioned, a key

element in our causality and stability results was the
avoidance of the Landau and Eckart frames. These seem-
ingly harmless assumptions have been almost universally
employed for nearly 75 years, even when it is known that
they are not necessary conditions for the study of viscous
hydrodynamics [3,95]. We hope our work will lead to new
insights in the study of the quark-gluon plasma formed in
heavy ion collisions and also in astrophysics applications
where viscous fluid dynamics is dynamically coupled to
Einstein’s equations.
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