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Abstract. We derive a new formulation of the relativistic Euler equa-
tions that exhibits remarkable properties. This new formulation consists
of a coupled system of geometric wave, transport, and transport-div-curl
equations, sourced by nonlinearities that are null forms relative to the
acoustical metric. Our new formulation is well-suited for various appli-
cations, in particular, for the study of stable shock formation, as it is
surveyed in the paper. Moreover, using the new formulation presented
here, we establish a local well-posedness result showing that the vorticity
and the entropy of the fluid are one degree more differentiable compared
to the regularity guaranteed by standard estimates (assuming that the
initial data enjoy the extra differentiability). This gain in regularity is
essential for the study of shock formation without symmetry assump-
tions. Our results hold for an arbitrary equation of state, not necessarily
of barotropic type.
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1. Introduction

The relativistic Euler equations are the most well-studied PDE system in rel-
ativistic fluid mechanics. In particular, they play a prominent role in cosmol-
ogy, where they are often used to model the evolution of the average matter-
energy content of the universe; see, for example, Weinberg’s well-known mono-
graph [40] for an account of the role that the relativistic Euler equations play
in the standard model of cosmology. The equations are also widely used in
astrophysics and high-energy nuclear physics, as is described, for example,
in [28]. Our main result in this article is our derivation of a new formulation
of the relativistic Euler equations that reveals remarkable new regularity and
null structures that are not visible relative standard order formulations. The
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new formulation is available for an arbitrary equation of state, not necessar-
ily of barotropic! type. Below we will describe potential applications that we
anticipate will be the subject of future works. We mention already that our
new formulation of the equations provides a viable framework for the rigorous
mathematical study of stable shock formation without symmetry assumptions
in solutions to the relativistic Euler equations; for reasons to be explained,
standard first-order formulations are not adequate for tracking the behavior of
solutions (without symmetry assumptions) all the way to the formation of a
shock or for extending the solution (uniquely, in a weak sense tied to suitable
selection criteria) past the first singularity.

We derive the new formulation by differentiating a standard first-order
formulation with various geometric differential operators and observing re-
markable cancellations.? The calculations are rather involved and make up the
bulk of the article. We have carefully divided them into manageable pieces; see
Sects. 4-8. Readers can jump ahead to Theorem 1.2 for a rough statement of
the equations and Theorem 3.1 for the precise version.

As we alluded to above, the relativistic Euler equations are typically
formulated as a first-order quasilinear hyperbolic PDE system. In our new for-
mulation, the equations take the form of a system of covariant wave equations
coupled to transport equations and to two transport-div-curl systems. The new
formulation is well suited for various applications in ways that first-order for-
mulations are not. In particular, the equations of Theorem 3.1 can be used to
prove that the vorticity and entropy are one degree more differentiable than one
might naively expect (assuming that the gain in differentiability is present in
the initial data). This gain in differentiability is crucial for the rigorous math-
ematical study of some fundamental phenomena that occur in fluid dynamics.
In particular, this gain, as well as other structural aspects of the new formula-
tion, is essential for the study of shock waves (without symmetry assumptions)
in relativistic fluid mechanics; see Sect. 1.2 for further discussion. Although the
gain in differentiability for the vorticity had previously been observed relative
to Lagrangian coordinates [13,15], Lagrangian coordinates are inadequate, for
example, for the study of the formation of shock singularities because they are
not adapted to the acoustic characteristics, whose intersection corresponds to
a shock. Hence, it is of fundamental importance that our new formulation al-
lows one to prove the gain in differentiability relative to arbitrary vectorfield
differential operators (with suitably regular coefficients). In this vein, we also
mention the works [9-11] on the non-relativistic compressible Euler equations,
in which a gain in differentiability for the vorticity was shown relative to La-
grangian coordinates, and the first author’s joint work [12], in which elliptic

1Barotropic equations of state are such that the pressure is a function of the proper energy
density p alone.

2In observing many of the cancellations, the precise numerical coefficients in the equations
are important; roughly, these cancellations lead to the presence of the null-form structures
described below. However, for most applications, the overall coefficient of the null forms is
not important; what matters is that the cancellations lead to null forms.
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estimates were used to show that for the non-relativistic barotropic compress-

ible Euler equations, it is possible to gain one derivative on the density relative

to the velocity (again, assuming that the gain is present in the initial data).
We also highlight the following key advantage of our new formulation:

It dramatically enlarges the set of energy estimate techniques that
can be applied to the study of the relativistic Euler equations. More
precisely, the new formulation partially decouples the “wave parts”
and “transport parts” of the system and unlocks our ability to apply
the full power of the commutator and multiplier vectorfield methods
to the study of the wave part; see Sect. 9.6 for further discussion.

For applications to shock waves, it is fundamentally important that one is able
to use the full scope of the vectorfield method on the wave part of the system;
see the introduction of [23] for a discussion of this issue in the related context
of the non-relativistic barotropic compressible Euler equations with vorticity.
In particular, our new formulation of the equations allows one to derive a
coercive energy estimate for the wave part of the system for any multiplier
vectorfield that is causal relative to the acoustical metric g of Definition 2.6
and on any hypersurface that is null or spacelike relative to g; see Sect. 9.6.1
for further discussion. In contrast, for first-order hyperbolic systems (a special
case of which is the relativistic Euler equations) without additional structure,
there is, up to scalar function multiple, only one? available energy estimate on
each causal or spacelike hypersurface.

Our second result in this article is that we provide a proof of local well-
posedness for the relativistic Euler equations that relies on the new formula-
tion; see Theorem 9.12. The new feature of Theorem 9.12 compared to standard
proofs of local well-posedness for the relativistic Euler equations is that it pro-
vides the aforementioned gain in differentiability for the vorticity and entropy.
Although many aspects of the proof of the theorem are standard, we also rely
on some geometric and analytic insights that are tied to the special struc-
ture of our new formulation of the equations and thus are likely not known to
the broader PDE research community; see the end of Sect. 1.2.3 for further
discussion of this point.

3Here we further explain how standard first-order formulations of the relativistic Euler
equations limit the available energy estimates. In deriving energy estimates for the relativistic
Euler equations in their standard first-order form, one is effectively controlling the wave and
transport parts of the system at the same time, and, up to a scalar function multiple, there is
only one energy estimate available for transport equations. To see this limitation in a more
concrete fashion, one can rewrite the relativistic Euler equations in first-order symmetric
hyperbolic form as A%(V)9,V = 0, where V is the array of solution variables and the A%
are symmetric matrices with A° positive definite; see, for example, [27] for a symmetric
hyperbolic formulation of the general relativistic Euler equations in the barotropic case.
The standard energy estimate for symmetric hyperbolic systems is obtained by taking the
FEuclidean dot product of both sides of the equation with V and then integrating by parts
over an appropriate spacetime domain foliated by spacelike hypersurfaces. The key point
is that for systems without additional structure, no other energy estimate is known, aside
from rescaling the standard one by a scalar function.
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For convenience, throughout the article, we restrict our attention to the
special relativistic Euler equations, that is, the relativistic Euler equations on
the Minkowski spacetime background (R'*2 1), where 1 is the Minkowski met-
ric. However, using arguments similar to the ones given in the present article,
our results could be extended to apply to the relativistic Euler equations on
a general Lorentzian manifold; such an extension could be useful, for exam-
ple, in applications to fluid mechanics in the setting of general relativity. For
use throughout the article, we fix a standard rectangular coordinate system
{z*}a=0,1,2,3, relative to which n,g := diag(—1,1,1,1). See Sect. 2.1 for our
index conventions. We clarify that in Sect. 9, we prove local well-posedness for
the relativistic Euler equations (including the aforementioned gain in regular-
ity for the vorticity and entropy) on the flat spacetime background (R x T3,7),
where the “spatial manifold” T? is the three-dimensional torus and we recy-
cle the notation in the sense that {%},=0,1,2,3 denotes standard coordinates
on R x T? (see Sect. 9.1.1 for further discussion) and 1 again denotes the
Minkowski metric; the compactness of T2 allows for a simplified approach to
some technical aspects of the argument while allowing us to illustrate the ideas
needed to exhibit the gain in regularity for the vorticity and entropy.

Our work here can be viewed as extensions of the second author’s previous
joint work [22], in which the authors derived a similar formulation of the
non-relativistic compressible Euler equations under an arbitrary barotropic
equation of state, as well as the second author’s work [33], which extended the
results of [22] to a general equation of state. However, since the geo-analytic
structures revealed by [22,33] are rather delicate (that is, quite unstable under
perturbations of the equations), it is far from obvious that similar results hold
in the relativistic case. We also stress that compared to the non-relativistic
case, our work here is substantially more intricate in that it extensively relies
on decompositions of various spacetime tensors into tensors that are parallel
to the four-velocity u and tensors that are n-orthogonal to u. In particular, we
heavily exploit that many of the tensorfields appearing in our analysis exhibit
improved regularity under u-directional differentiation or contraction against
u.

1.1. Rough Statement of the New Formulation

In this subsection, we provide a schematic version of our new formulation of the
equations; in Sect. 1.2, we will refer to the schematic version when describing
potential applications. In any formulation of the relativistic Euler equations,
there is great freedom in choosing state-space variables (i.e., the fundamental
unknowns in the system). In this article, as state-space variables, we use the
logarithmic enthalpy h, the entropy s, and the four-velocity w, which is a
future-directed timelike vectorfield normalized by nasu®u® = —1. Other fluid
quantities such as the proper energy density p, the pressure p will also play
a role in our discussion, but these quantities can be viewed as functions of
the state-space variables; see Sect. 2 for detailed descriptions of all of these
variables as well as the first-order formulation of the equations that forms the
starting point for our ensuing analysis.
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As we mentioned earlier, our new formulation comprises a system of co-
variant wave equations coupled to transport equations and to two transport-
div-curl systems. Roughly, the wave equations correspond to the propagation
of sound waves, while the transport equations correspond to the transporting
of vorticity and entropy along the integral curves of u. The transport-div-
curl systems are needed to control the top-order derivatives of the vorticity
and the entropy and to exhibit the aforementioned gain in differentiability. In
addition to the state-space variables h, s, and u, our formulation also involves a
collection of auxiliary? fluid variables, including the entropy gradient one-form
Sq := 048 and the vorticity w®, which is a vectorfield that is n-orthogonal to
u (see Definition 2.2). Among these auxiliary variables, of crucial importance
for our work is that we have identified new combinations of fluid variables that
solve transport equations with unexpectedly good structure. These structures
can be used to show that the combinations exhibit a gain in regularity com-
pared to what can be inferred from a standard first-order formulation of the
equations. We refer to these special combinations as “modified variables,” and
throughout, we denote them by C* and D; see Definition 2.8.

The remaining discussion in this subsection relies on some schematic
notation and refers to some geometric objects that are not precisely defined
until later in the article:

143

e The notation “~” below means that we are only highlighting the maxi-
mum number of derivatives of the state-space variables that the auxiliary
variables depend on. We note, however, that in practice, the precise struc-
ture of many of the terms that we encounter is important for observing
the cancellations that lie behind our main results.

e “0” schematically denotes the spacetime gradient with respect to the rect-
angular coordinates, and “02?” schematically denotes two differentiations
with respect to the rectangular coordinates.

e g = g(h,s,u) denotes the acoustical metric, which is Lorentzian (see
Definition 2.6).

e @ ~ Ju + Oh is the vorticity vectorfield (see Definition 2.2).

e S, := 0,5 is the entropy gradient one-form.

o C% ~ Q%u + 0°h is a modified version of the vorticity of w, that is, the
vorticity of the vorticity (see Definition 2.8).

e D ~ 9%s is a modified version of 9,5% (see Definition 2.8).

e Q(ATy,...,0T,,) denotes special terms that are quadratic in the ten-
sorfields 971, ...,0T,,. More precisely, the Q(9T1,...,9T,,) are linear
combinations of the standard null forms relative to g; see Definition 1.1
for the definitions of the standard null forms relative to g and Sect. 1.2.2
for a discussion of the significance that the special structure of these null
forms plays in the context of the study of shock waves.

e £(9Th,...,0T,,) denotes linear combinations of terms that are at most
linear in 977, ...,0T),,; see Sect. 1.2.2 for a discussion of the significance
of the linear dependence in the context of the study of shock waves.

4By “auxiliary,” we mean that they are determined by h, s, and u.
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Before schematically stating our main theorem, we first provide the def-
initions of the standard null forms relative to g.

Definition 1.1 (Standard null forms relative to g). We define the standard null
forms relative to g (which we refer to as “standard g-null forms” for short) as
follows, where ¢ and 1 are scalar functions and 0 < pu < v < 3:

Q9 (96, 0¢) = (971)*"(9a9) (Ip¢),
QW(8¢75¢) = (au(b)(au'(/}) - (8V¢)(8Mw) (1'1)

We now present the schematic version of our main theorem; see Theo-
rem 3.1 for the precise statements.

Theorem 1.2 (New formulation of the relativistic Euler equation (schematic
version)). Assume that (h,s,u®) is a C® solution to the (first-order) relativistic
Euler equations (2.17)-(2.19) + (2.20). Then h, u®, and s also verify the
following covariant® wave equations, where the schematic notation “~” below
means that we have ignored the coefficients of the inhomogeneous terms and
also harmless (from the point of view of applications to shock waves) lower-
order terms, which are allowed to depend on h, s, u, S, and w (but not their
derivatives):

Oyh ~ D+ Q(0h, 0u) + £(0h), (1.2a)
Ogu” ~ C* + Q(0h, 0u) + £(0h, 0u), (1.2b)
Ogs ~ D + £(0h). (1.2¢)

In addition, s, S, and w® verify the following transport equations:
u®0,s =0, (1.3a)
u”0,8% ~ £(0u), (1.3b)
w0y ~ L£(0h, du). (1.3c)

Moreover, S* verifies the following transport-div-curl system:

w0, D ~ C + Q(9S, Oh, Ou) + £(dh, Ou), (1.4a)
vort®(S) = 0, (1.4b)

where the vorticity operator vort is defined in Definition 2.1.
Finally, w® verifies the following transport-div-curl system:

O™ =~ £(0h), (1.5a)
U 0,CY ~C + D+ Q(9S, 0w, Oh, du) + £(0S, 0w, Oh, Ou). (1.5b)

5Relative to arbitrary coordinates, for scalar functions f, we have

1 —1yo
01 = e (/%0
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1.2. Connections to the Study of Shock Waves

As we have mentioned, the relativistic Euler equations are an example of a
quasilinear hyperbolic PDE system. A central feature of the study of such
systems is that initially smooth solutions can form shock singularities in fi-
nite time. By a “shock,” we roughly mean that one of the solution’s partial
derivatives with respect to the standard coordinates blows up in finite time
while the solution itself remains bounded. In the last decade, for interesting
classes of quasilinear hyperbolic PDEs in multiple spatial dimensions, there
has been dramatic progress [4,8,23-25,32,34,36,37] on our understanding of
the formation of shocks as well as our understanding of the subsequent behav-
ior of solutions past their singularities [5,7] (where the equations are verified
in a weak sense past singularities).

The works cited above have roots in the work of John [16] on singularity
formation for quasilinear wave equations in one spatial dimension as well as
Alinhac’s foundational works [2,3], which were the first to provide a construc-
tive description of shock formation for quasilinear wave equations in more than
one spatial dimension without symmetry assumptions. More precisely, Alin-
hac’s approach allowed him to follow the solution precisely to the time of first
blowup, but not further. His work yielded sharp information about the first
singularity, but only for a subset of “non-degenerate” initial data such that
the solution’s first singularity is isolated in the constant-time hypersurface of
first blowup; in particular, his proof did not apply to spherically symmetric
initial data, where the “first” singularity typically corresponds to blowup on
a sphere.

Subsequently, Christodoulou [4] proved a breakthrough result on the for-
mation of shocks for solutions to the relativistic Euler equations in irrotational
(that is, vorticity free) and isentropic regions of spacetime. More precisely, for
the family of quasilinear wave equations that arise in the study of the ir-
rotational and isentropic relativistic Euler equations,® Christodoulou gave a
complete description of the maximal development of an open set (without
symmetry assumptions) of initial data and showed in particular that an open
subset of these data lead to shock-forming” solutions. Moreover, he gave a
precise geometric description of the set of spacetime points where blowup oc-
curs by showing that the singularity formation is exactly characterized by the
intersection of the acoustic characteristics. In practice, he accomplished this
by constructing an acoustical eikonal function U, whose level sets are acoustic

6For solutions with vanishing vorticity and constant entropy, one can introduce a potential
function ® and reformulate the relativistic Euler equations as a quasilinear wave equation
in .

7One of the key results of [4] is conditional: For small data, the only possible singularities
that can form are shocks driven by the intersection of the acoustic characteristics. Here
“small” means a small perturbation of the data of a non-vacuum constant fluid state, where
the size of the perturbation is measured relative to a high-order Sobolev norm. Another
result of [4] is that there is an open subset of small data, perhaps strictly contained in the
aforementioned set of data, such that the acoustic characteristics do in fact intersect in finite
time. The results of [4] leave open the possibility that there might exist some non-trivial
small global solutions.
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characteristics (see Sect. 1.2.1 for further discussion), and then constructing
an initially positive geometric scalar function p ~ 1/0U known as the inverse
foliation density of the characteristics, such that @ — 0 corresponds to the
intersection of the characteristics and the blowup of QU and of the fluid solu-
tion’s derivatives too. Analytically, u plays the role of a weight that appears
throughout the work [4], and the main theme of the proof is to control the
solution all the way up to the region where u = 0. We stress that [4] was the
first work that provided sharp information about the boundary of the maxi-
mal development in more than one spatial dimension in the context of shock
formation. Roughly, the maximal development is the largest possible classical
solution that is uniquely determined by the initial data; see [29,41] for further
discussion.

To prove his results, Christodoulou relied on a novel formulation of the
relativistic Euler equations. However, since he studied the shock formation
only in irrotational and isentropic regions, he was able to introduce a po-
tential function ®, and his new formulation of the equations was drastically
simpler than the equations of Theorem 1.2. In fact, the equations are exactly
the covariant wave equation system 0;0,® = 0 (with a = 0,1,2,3), where
g is an appropriate scalar function multiple of the acoustical metric g and
g = g(0®). In particular, Christodoulou was able to avoid deriving/relying on
the transport-div-curl equations from Theorem 1.2, and he therefore did not
need to derive elliptic estimates for the fluid variables. In total, the potential
formulation leads to dramatic simplifications compared to the equations of
Theorem 1.2, especially in the context of the study of shock waves; it seems
quite miraculous that the equations of Theorem 1.2 have structures that are
compatible with extending Christodoulou’s results away from the irrotational
and isentropic case (see below for further discussion).

Although the sharp information that Christodoulou derived about the
maximal development is of interest in itself, it is also an essential ingredient
for setting up the shock development problem. The shock development prob-
lem, which was recently partially® solved in the breakthrough work [5] (see
also the precursor work [7] in spherical symmetry), is the problem of con-
structing the shock hypersurface of discontinuity (across which the solution
jumps) as well as constructing a unique weak solution in a neighborhood of
the shock hypersurface (uniqueness is enforced by selection criteria that are
equivalent to the well-known Rankine-Hugoniot conditions). Christodoulou’s
description of the maximal development provided substantial new information
that was not available under Alinhac’s approach; as we mentioned above, due
to some technical limitations tied to his reliance on Nash—Moser estimates,
Alinhac was able to follow the solution only to the constant-time hypersurface
of first blowup. In contrast, by exploiting some delicate tensorial regularity
properties of eikonal functions for wave equations (see below for more details),

8In [5], Christodoulou solved the “restricted” shock development problem, in which he ig-
nored the jump in entropy and vorticity across the shock hypersurface.
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Christodoulou was able to avoid Nash—Moser estimates; this was a key ingredi-
ent in his following the solution to the boundary of the maximal development.
Readers can consult [14] for a survey of some of these works, with a focus on
the geometric and analytic techniques that lie behind the proofs.

We now aim to connect the works mentioned above to the new formula-
tion of the relativistic Euler equations that we provide in this paper. To this
end, for the equations in the works mentioned above, we first highlight the
main structural features that allowed the proofs to go through. Specifically,
the works [4,8,23-25,32,34,36,37] crucially relied on the following ingredients:

1. (Nonlinear geometric optics). The authors relied on geometric decompo-
sitions adapted to the characteristic hypersurfaces (also known as “char-
acteristics” or “null hypersurfaces” in the context of wave equations)
corresponding to the solution variable whose derivatives blow up. This
was implemented with the help of an eikonal function U, whose level sets
are characteristics. The eikonal function is a solution to the eikonal equa-
tion, which is a fully nonlinear transport equation that is coupled to the
solution in the sense that the coefficients of the eikonal equation depend
on the solution. Moreover, the authors showed that the intersection of
the characteristics corresponds to the formation of a singularity in the
derivatives of the eikonal function and in the derivatives of the solution.

2. (Quasilinear null structure). The authors found a formulation of the equa-
tions exhibiting remarkable null structures, where the notion of “null” is
tied to the true characteristics, which are solution-dependent in view of
the quasilinear nature of the equations. These structures allow one to de-
rive sharp, fully nonlinear decompositions along characteristic hypersur-
faces that reveal exactly which directional derivatives blow up and that
precisely identify the terms driving the blowup (which are typically of
Riccati-type, i.e., in analogy with the nonlinearities in the ODE ¢ = 32).

3. (Regularity properties and singular high-order energy estimates). The
authors’ formulation allows one to derive sufficient L?-type Sobolev reg-
ularity for all unknowns in the problem, including the eikonal func-
tion, whose regularity properties are tied to the regularity of the solu-
tion through the dependence of the coefficients of the eikonal equation on
the solution. In particular, to close these estimates, the authors had to
show that various solution variables are one degree more differentiable
compared to the degree of differentiability guaranteed by standard energy
estimates.

4. (Structures amenable to commutations with geometric vectorfields). The
authors’ formulation is such that one can commute all of the equations
with geometric vectorfields constructed out of the eikonal function U,
generating only controllable commutator error terms. By “controllable,”
we mean both from the point of view of regularity and from the point of
view of the strength of their singular nature. In the works [23,34,36] that
treat systems with multiple characteristic speeds, these are particularly
delicate tasks that are quite sensitive to the structure of the equations;
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one key reason behind their delicate nature is that the eikonal function
(and thus the geometric vectorfields constructed from it) can be fully
adapted only to “one speed,” that is, to the characteristics whose inter-
section correspond to the singularity.

In the remainder of this subsection, we explain why our new formulation
of the relativistic Euler equations has all four of the features listed above and
is therefore well-suited for studying shocks without symmetry assumptions.
Readers can consult the works [22,33,35] for related but extended discussion
in the case of the non-relativistic compressible Euler equations.

1.2.1. Nonlinear Geometric Optics and Geometric Coordinates. First, to im-
plement nonlinear geometric optics, one can construct an eikonal function. In
the context of the relativistic Euler equations, one would construct an eikonal
function U adapted to the acoustic characteristics, that is, a solution to the
eikonal equation

(g7H)*P0,Ud5U = 0, (1.6)

supplemented by appropriate initial conditions, where g = g(h,s,u) is the
acoustical metric (see Definition 2.6). Note that U is adapted to the “wave
part” of the system and not the transport part. In the context of the rel-
ativistic Euler equations, this is reasonable in the sense that the transport
part corresponds to the evolution of vorticity and entropy, and there are no
known blowup results for these quantities, even in one spatial dimension.” Put
differently, U is adapted to the “portion” of the relativistic Euler flow that
is expected to develop singularities. More generally, eikonal functions are a
natural tool for the study of wave-like systems, regardless of whether or not
one is studying shocks. We also stress that introducing an eikonal function is
essentially the same as relying on the method of characteristics. However, in
more than one spatial dimension, the method of characteristics must be sup-
plemented with an exceptionally technical ingredient that we further describe
below: energy estimates that hold all the way up to the shock.

The first instance of an eikonal function being used to study the global
properties of solutions to a quasilinear hyperbolic PDE occurred not in the
context of singularity formation, but rather in a celebrated global existence re-
sult: the Christodoulou-Klainerman [6] proof of the stability of the Minkowski
spacetime as a solution to the Einstein vacuum equations. Alinhac’s aforemen-
tioned works [2,3] were the first instances in which an eikonal function was
used to study a non-triv