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Abstract. We derive a new formulation of the relativistic Euler equa-
tions that exhibits remarkable properties. This new formulation consists
of a coupled system of geometric wave, transport, and transport-div-curl
equations, sourced by nonlinearities that are null forms relative to the
acoustical metric. Our new formulation is well-suited for various appli-
cations, in particular, for the study of stable shock formation, as it is
surveyed in the paper. Moreover, using the new formulation presented
here, we establish a local well-posedness result showing that the vorticity
and the entropy of the fluid are one degree more differentiable compared
to the regularity guaranteed by standard estimates (assuming that the
initial data enjoy the extra differentiability). This gain in regularity is
essential for the study of shock formation without symmetry assump-
tions. Our results hold for an arbitrary equation of state, not necessarily
of barotropic type.
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1. Introduction

The relativistic Euler equations are the most well-studied PDE system in rel-
ativistic fluid mechanics. In particular, they play a prominent role in cosmol-
ogy, where they are often used to model the evolution of the average matter-
energy content of the universe; see, for example, Weinberg’s well-known mono-
graph [40] for an account of the role that the relativistic Euler equations play
in the standard model of cosmology. The equations are also widely used in
astrophysics and high-energy nuclear physics, as is described, for example,
in [28]. Our main result in this article is our derivation of a new formulation
of the relativistic Euler equations that reveals remarkable new regularity and
null structures that are not visible relative standard order formulations. The
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new formulation is available for an arbitrary equation of state, not necessar-
ily of barotropic1 type. Below we will describe potential applications that we
anticipate will be the subject of future works. We mention already that our
new formulation of the equations provides a viable framework for the rigorous
mathematical study of stable shock formation without symmetry assumptions
in solutions to the relativistic Euler equations; for reasons to be explained,
standard first-order formulations are not adequate for tracking the behavior of
solutions (without symmetry assumptions) all the way to the formation of a
shock or for extending the solution (uniquely, in a weak sense tied to suitable
selection criteria) past the first singularity.

We derive the new formulation by differentiating a standard first-order
formulation with various geometric differential operators and observing re-
markable cancellations.2 The calculations are rather involved and make up the
bulk of the article. We have carefully divided them into manageable pieces; see
Sects. 4–8. Readers can jump ahead to Theorem 1.2 for a rough statement of
the equations and Theorem 3.1 for the precise version.

As we alluded to above, the relativistic Euler equations are typically
formulated as a first-order quasilinear hyperbolic PDE system. In our new for-
mulation, the equations take the form of a system of covariant wave equations
coupled to transport equations and to two transport-div-curl systems. The new
formulation is well suited for various applications in ways that first-order for-
mulations are not. In particular, the equations of Theorem 3.1 can be used to
prove that the vorticity and entropy are one degree more differentiable than one
might naively expect (assuming that the gain in differentiability is present in
the initial data). This gain in differentiability is crucial for the rigorous math-
ematical study of some fundamental phenomena that occur in fluid dynamics.
In particular, this gain, as well as other structural aspects of the new formula-
tion, is essential for the study of shock waves (without symmetry assumptions)
in relativistic fluid mechanics; see Sect. 1.2 for further discussion. Although the
gain in differentiability for the vorticity had previously been observed relative
to Lagrangian coordinates [13,15], Lagrangian coordinates are inadequate, for
example, for the study of the formation of shock singularities because they are
not adapted to the acoustic characteristics, whose intersection corresponds to
a shock. Hence, it is of fundamental importance that our new formulation al-
lows one to prove the gain in differentiability relative to arbitrary vectorfield
differential operators (with suitably regular coefficients). In this vein, we also
mention the works [9–11] on the non-relativistic compressible Euler equations,
in which a gain in differentiability for the vorticity was shown relative to La-
grangian coordinates, and the first author’s joint work [12], in which elliptic

1Barotropic equations of state are such that the pressure is a function of the proper energy
density ρ alone.
2In observing many of the cancellations, the precise numerical coefficients in the equations
are important; roughly, these cancellations lead to the presence of the null-form structures
described below. However, for most applications, the overall coefficient of the null forms is
not important; what matters is that the cancellations lead to null forms.
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estimates were used to show that for the non-relativistic barotropic compress-
ible Euler equations, it is possible to gain one derivative on the density relative
to the velocity (again, assuming that the gain is present in the initial data).

We also highlight the following key advantage of our new formulation:

It dramatically enlarges the set of energy estimate techniques that
can be applied to the study of the relativistic Euler equations. More
precisely, the new formulation partially decouples the “wave parts”
and “transport parts” of the system and unlocks our ability to apply
the full power of the commutator and multiplier vectorfield methods
to the study of the wave part; see Sect. 9.6 for further discussion.

For applications to shock waves, it is fundamentally important that one is able
to use the full scope of the vectorfield method on the wave part of the system;
see the introduction of [23] for a discussion of this issue in the related context
of the non-relativistic barotropic compressible Euler equations with vorticity.
In particular, our new formulation of the equations allows one to derive a
coercive energy estimate for the wave part of the system for any multiplier
vectorfield that is causal relative to the acoustical metric g of Definition 2.6
and on any hypersurface that is null or spacelike relative to g; see Sect. 9.6.1
for further discussion. In contrast, for first-order hyperbolic systems (a special
case of which is the relativistic Euler equations) without additional structure,
there is, up to scalar function multiple, only one3 available energy estimate on
each causal or spacelike hypersurface.

Our second result in this article is that we provide a proof of local well-
posedness for the relativistic Euler equations that relies on the new formula-
tion; see Theorem 9.12. The new feature of Theorem 9.12 compared to standard
proofs of local well-posedness for the relativistic Euler equations is that it pro-
vides the aforementioned gain in differentiability for the vorticity and entropy.
Although many aspects of the proof of the theorem are standard, we also rely
on some geometric and analytic insights that are tied to the special struc-
ture of our new formulation of the equations and thus are likely not known to
the broader PDE research community; see the end of Sect. 1.2.3 for further
discussion of this point.

3Here we further explain how standard first-order formulations of the relativistic Euler
equations limit the available energy estimates. In deriving energy estimates for the relativistic
Euler equations in their standard first-order form, one is effectively controlling the wave and
transport parts of the system at the same time, and, up to a scalar function multiple, there is
only one energy estimate available for transport equations. To see this limitation in a more
concrete fashion, one can rewrite the relativistic Euler equations in first-order symmetric
hyperbolic form as Aα(V)∂αV = 0, where V is the array of solution variables and the Aα

are symmetric matrices with A0 positive definite; see, for example, [27] for a symmetric
hyperbolic formulation of the general relativistic Euler equations in the barotropic case.
The standard energy estimate for symmetric hyperbolic systems is obtained by taking the
Euclidean dot product of both sides of the equation with V and then integrating by parts
over an appropriate spacetime domain foliated by spacelike hypersurfaces. The key point
is that for systems without additional structure, no other energy estimate is known, aside
from rescaling the standard one by a scalar function.
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For convenience, throughout the article, we restrict our attention to the
special relativistic Euler equations, that is, the relativistic Euler equations on
the Minkowski spacetime background (R1+3,η), where η is the Minkowski met-
ric. However, using arguments similar to the ones given in the present article,
our results could be extended to apply to the relativistic Euler equations on
a general Lorentzian manifold; such an extension could be useful, for exam-
ple, in applications to fluid mechanics in the setting of general relativity. For
use throughout the article, we fix a standard rectangular coordinate system
{xα}α=0,1,2,3, relative to which ηαβ := diag(−1, 1, 1, 1). See Sect. 2.1 for our
index conventions. We clarify that in Sect. 9, we prove local well-posedness for
the relativistic Euler equations (including the aforementioned gain in regular-
ity for the vorticity and entropy) on the flat spacetime background (R×T

3,η),
where the “spatial manifold” T

3 is the three-dimensional torus and we recy-
cle the notation in the sense that {xα}α=0,1,2,3 denotes standard coordinates
on R × T

3 (see Sect. 9.1.1 for further discussion) and η again denotes the
Minkowski metric; the compactness of T3 allows for a simplified approach to
some technical aspects of the argument while allowing us to illustrate the ideas
needed to exhibit the gain in regularity for the vorticity and entropy.

Our work here can be viewed as extensions of the second author’s previous
joint work [22], in which the authors derived a similar formulation of the
non-relativistic compressible Euler equations under an arbitrary barotropic
equation of state, as well as the second author’s work [33], which extended the
results of [22] to a general equation of state. However, since the geo-analytic
structures revealed by [22,33] are rather delicate (that is, quite unstable under
perturbations of the equations), it is far from obvious that similar results hold
in the relativistic case. We also stress that compared to the non-relativistic
case, our work here is substantially more intricate in that it extensively relies
on decompositions of various spacetime tensors into tensors that are parallel
to the four-velocity u and tensors that are η-orthogonal to u. In particular, we
heavily exploit that many of the tensorfields appearing in our analysis exhibit
improved regularity under u-directional differentiation or contraction against
u.

1.1. Rough Statement of the New Formulation

In this subsection, we provide a schematic version of our new formulation of the
equations; in Sect. 1.2, we will refer to the schematic version when describing
potential applications. In any formulation of the relativistic Euler equations,
there is great freedom in choosing state-space variables (i.e., the fundamental
unknowns in the system). In this article, as state-space variables, we use the
logarithmic enthalpy h, the entropy s, and the four-velocity u, which is a
future-directed timelike vectorfield normalized by ηαβuαuβ = −1. Other fluid
quantities such as the proper energy density ρ, the pressure p will also play
a role in our discussion, but these quantities can be viewed as functions of
the state-space variables; see Sect. 2 for detailed descriptions of all of these
variables as well as the first-order formulation of the equations that forms the
starting point for our ensuing analysis.
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As we mentioned earlier, our new formulation comprises a system of co-
variant wave equations coupled to transport equations and to two transport-
div-curl systems. Roughly, the wave equations correspond to the propagation
of sound waves, while the transport equations correspond to the transporting
of vorticity and entropy along the integral curves of u. The transport-div-
curl systems are needed to control the top-order derivatives of the vorticity
and the entropy and to exhibit the aforementioned gain in differentiability. In
addition to the state-space variables h, s, and u, our formulation also involves a
collection of auxiliary4 fluid variables, including the entropy gradient one-form
Sα := ∂αs and the vorticity �α, which is a vectorfield that is η-orthogonal to
u (see Definition 2.2). Among these auxiliary variables, of crucial importance
for our work is that we have identified new combinations of fluid variables that
solve transport equations with unexpectedly good structure. These structures
can be used to show that the combinations exhibit a gain in regularity com-
pared to what can be inferred from a standard first-order formulation of the
equations. We refer to these special combinations as “modified variables,” and
throughout, we denote them by Cα and D; see Definition 2.8.

The remaining discussion in this subsection relies on some schematic
notation and refers to some geometric objects that are not precisely defined
until later in the article:

• The notation “∼” below means that we are only highlighting the maxi-
mum number of derivatives of the state-space variables that the auxiliary
variables depend on. We note, however, that in practice, the precise struc-
ture of many of the terms that we encounter is important for observing
the cancellations that lie behind our main results.

• “∂” schematically denotes the spacetime gradient with respect to the rect-
angular coordinates, and “∂2” schematically denotes two differentiations
with respect to the rectangular coordinates.

• g = g(h, s, u) denotes the acoustical metric, which is Lorentzian (see
Definition 2.6).

• � ∼ ∂u + ∂h is the vorticity vectorfield (see Definition 2.2).
• Sα := ∂αs is the entropy gradient one-form.
• Cα ∼ ∂2u + ∂2h is a modified version of the vorticity of �, that is, the

vorticity of the vorticity (see Definition 2.8).
• D ∼ ∂2s is a modified version of ∂αSα (see Definition 2.8).
• Q(∂T1, . . . , ∂Tm) denotes special terms that are quadratic in the ten-

sorfields ∂T1, . . . , ∂Tm. More precisely, the Q(∂T1, . . . , ∂Tm) are linear
combinations of the standard null forms relative to g; see Definition 1.1
for the definitions of the standard null forms relative to g and Sect. 1.2.2
for a discussion of the significance that the special structure of these null
forms plays in the context of the study of shock waves.

• L(∂T1, . . . , ∂Tm) denotes linear combinations of terms that are at most
linear in ∂T1, . . . , ∂Tm; see Sect. 1.2.2 for a discussion of the significance
of the linear dependence in the context of the study of shock waves.

4By “auxiliary,” we mean that they are determined by h, s, and u.
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Before schematically stating our main theorem, we first provide the def-
initions of the standard null forms relative to g.

Definition 1.1 (Standard null forms relative to g). We define the standard null
forms relative to g (which we refer to as “standard g-null forms” for short) as
follows, where φ and ψ are scalar functions and 0 ≤ μ < ν ≤ 3:

Q(g)(∂φ, ∂ψ) := (g−1)αβ(∂αφ)(∂βψ),

Qμν(∂φ, ∂ψ) := (∂μφ)(∂νψ) − (∂νφ)(∂μψ). (1.1)

We now present the schematic version of our main theorem; see Theo-
rem 3.1 for the precise statements.

Theorem 1.2 (New formulation of the relativistic Euler equation (schematic
version)). Assume that (h, s, uα) is a C3 solution to the (first-order) relativistic
Euler equations (2.17)–(2.19) + (2.20). Then h, uα, and s also verify the
following covariant5 wave equations, where the schematic notation “�” below
means that we have ignored the coefficients of the inhomogeneous terms and
also harmless (from the point of view of applications to shock waves) lower-
order terms, which are allowed to depend on h, s, u, S, and � (but not their
derivatives):

�gh � D + Q(∂h, ∂u) + L(∂h), (1.2a)

�gu
α � Cα + Q(∂h, ∂u) + L(∂h, ∂u), (1.2b)

�gs � D + L(∂h). (1.2c)

In addition, s, Sα, and �α verify the following transport equations:

uκ∂κs = 0, (1.3a)

uκ∂κSα � L(∂u), (1.3b)

uκ∂κ�α � L(∂h, ∂u). (1.3c)

Moreover, Sα verifies the following transport-div-curl system:

uκ∂κD � C + Q(∂S, ∂h, ∂u) + L(∂h, ∂u), (1.4a)

vortα(S) = 0, (1.4b)

where the vorticity operator vort is defined in Definition 2.1.
Finally, �α verifies the following transport-div-curl system:

∂κ�κ � L(∂h), (1.5a)

uκ∂κCα � C + D + Q(∂S, ∂�, ∂h, ∂u) + L(∂S, ∂�, ∂h, ∂u). (1.5b)

5Relative to arbitrary coordinates, for scalar functions f , we have

�gf =
1

√|detg|∂α

(√
|detg|(g−1)αβ∂βf

)
.
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1.2. Connections to the Study of Shock Waves

As we have mentioned, the relativistic Euler equations are an example of a
quasilinear hyperbolic PDE system. A central feature of the study of such
systems is that initially smooth solutions can form shock singularities in fi-
nite time. By a “shock,” we roughly mean that one of the solution’s partial
derivatives with respect to the standard coordinates blows up in finite time
while the solution itself remains bounded. In the last decade, for interesting
classes of quasilinear hyperbolic PDEs in multiple spatial dimensions, there
has been dramatic progress [4,8,23–25,32,34,36,37] on our understanding of
the formation of shocks as well as our understanding of the subsequent behav-
ior of solutions past their singularities [5,7] (where the equations are verified
in a weak sense past singularities).

The works cited above have roots in the work of John [16] on singularity
formation for quasilinear wave equations in one spatial dimension as well as
Alinhac’s foundational works [2,3], which were the first to provide a construc-
tive description of shock formation for quasilinear wave equations in more than
one spatial dimension without symmetry assumptions. More precisely, Alin-
hac’s approach allowed him to follow the solution precisely to the time of first
blowup, but not further. His work yielded sharp information about the first
singularity, but only for a subset of “non-degenerate” initial data such that
the solution’s first singularity is isolated in the constant-time hypersurface of
first blowup; in particular, his proof did not apply to spherically symmetric
initial data, where the “first” singularity typically corresponds to blowup on
a sphere.

Subsequently, Christodoulou [4] proved a breakthrough result on the for-
mation of shocks for solutions to the relativistic Euler equations in irrotational
(that is, vorticity free) and isentropic regions of spacetime. More precisely, for
the family of quasilinear wave equations that arise in the study of the ir-
rotational and isentropic relativistic Euler equations,6 Christodoulou gave a
complete description of the maximal development of an open set (without
symmetry assumptions) of initial data and showed in particular that an open
subset of these data lead to shock-forming7 solutions. Moreover, he gave a
precise geometric description of the set of spacetime points where blowup oc-
curs by showing that the singularity formation is exactly characterized by the
intersection of the acoustic characteristics. In practice, he accomplished this
by constructing an acoustical eikonal function U , whose level sets are acoustic

6For solutions with vanishing vorticity and constant entropy, one can introduce a potential
function Φ and reformulate the relativistic Euler equations as a quasilinear wave equation
in Φ.
7One of the key results of [4] is conditional: For small data, the only possible singularities
that can form are shocks driven by the intersection of the acoustic characteristics. Here
“small” means a small perturbation of the data of a non-vacuum constant fluid state, where
the size of the perturbation is measured relative to a high-order Sobolev norm. Another
result of [4] is that there is an open subset of small data, perhaps strictly contained in the
aforementioned set of data, such that the acoustic characteristics do in fact intersect in finite
time. The results of [4] leave open the possibility that there might exist some non-trivial

small global solutions.
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characteristics (see Sect. 1.2.1 for further discussion), and then constructing
an initially positive geometric scalar function μ ∼ 1/∂U known as the inverse
foliation density of the characteristics, such that μ → 0 corresponds to the
intersection of the characteristics and the blowup of ∂U and of the fluid solu-
tion’s derivatives too. Analytically, μ plays the role of a weight that appears
throughout the work [4], and the main theme of the proof is to control the
solution all the way up to the region where μ = 0. We stress that [4] was the
first work that provided sharp information about the boundary of the maxi-
mal development in more than one spatial dimension in the context of shock
formation. Roughly, the maximal development is the largest possible classical
solution that is uniquely determined by the initial data; see [29,41] for further
discussion.

To prove his results, Christodoulou relied on a novel formulation of the
relativistic Euler equations. However, since he studied the shock formation
only in irrotational and isentropic regions, he was able to introduce a po-
tential function Φ, and his new formulation of the equations was drastically
simpler than the equations of Theorem 1.2. In fact, the equations are exactly
the covariant wave equation system �g̃∂αΦ = 0 (with α = 0, 1, 2, 3), where
g̃ is an appropriate scalar function multiple of the acoustical metric g and
g̃ = g̃(∂Φ). In particular, Christodoulou was able to avoid deriving/relying on
the transport-div-curl equations from Theorem 1.2, and he therefore did not
need to derive elliptic estimates for the fluid variables. In total, the potential
formulation leads to dramatic simplifications compared to the equations of
Theorem 1.2, especially in the context of the study of shock waves; it seems
quite miraculous that the equations of Theorem 1.2 have structures that are
compatible with extending Christodoulou’s results away from the irrotational
and isentropic case (see below for further discussion).

Although the sharp information that Christodoulou derived about the
maximal development is of interest in itself, it is also an essential ingredient
for setting up the shock development problem. The shock development prob-
lem, which was recently partially8 solved in the breakthrough work [5] (see
also the precursor work [7] in spherical symmetry), is the problem of con-
structing the shock hypersurface of discontinuity (across which the solution
jumps) as well as constructing a unique weak solution in a neighborhood of
the shock hypersurface (uniqueness is enforced by selection criteria that are
equivalent to the well-known Rankine–Hugoniot conditions). Christodoulou’s
description of the maximal development provided substantial new information
that was not available under Alinhac’s approach; as we mentioned above, due
to some technical limitations tied to his reliance on Nash–Moser estimates,
Alinhac was able to follow the solution only to the constant-time hypersurface
of first blowup. In contrast, by exploiting some delicate tensorial regularity
properties of eikonal functions for wave equations (see below for more details),

8In [5], Christodoulou solved the “restricted” shock development problem, in which he ig-
nored the jump in entropy and vorticity across the shock hypersurface.
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Christodoulou was able to avoid Nash–Moser estimates; this was a key ingredi-
ent in his following the solution to the boundary of the maximal development.
Readers can consult [14] for a survey of some of these works, with a focus on
the geometric and analytic techniques that lie behind the proofs.

We now aim to connect the works mentioned above to the new formula-
tion of the relativistic Euler equations that we provide in this paper. To this
end, for the equations in the works mentioned above, we first highlight the
main structural features that allowed the proofs to go through. Specifically,
the works [4,8,23–25,32,34,36,37] crucially relied on the following ingredients:

1. (Nonlinear geometric optics). The authors relied on geometric decompo-
sitions adapted to the characteristic hypersurfaces (also known as “char-
acteristics” or “null hypersurfaces” in the context of wave equations)
corresponding to the solution variable whose derivatives blow up. This
was implemented with the help of an eikonal function U , whose level sets
are characteristics. The eikonal function is a solution to the eikonal equa-
tion, which is a fully nonlinear transport equation that is coupled to the
solution in the sense that the coefficients of the eikonal equation depend
on the solution. Moreover, the authors showed that the intersection of
the characteristics corresponds to the formation of a singularity in the
derivatives of the eikonal function and in the derivatives of the solution.

2. (Quasilinear null structure). The authors found a formulation of the equa-
tions exhibiting remarkable null structures, where the notion of “null” is
tied to the true characteristics, which are solution-dependent in view of
the quasilinear nature of the equations. These structures allow one to de-
rive sharp, fully nonlinear decompositions along characteristic hypersur-
faces that reveal exactly which directional derivatives blow up and that
precisely identify the terms driving the blowup (which are typically of
Riccati-type, i.e., in analogy with the nonlinearities in the ODE ẏ = y2).

3. (Regularity properties and singular high-order energy estimates). The
authors’ formulation allows one to derive sufficient L2-type Sobolev reg-
ularity for all unknowns in the problem, including the eikonal func-
tion, whose regularity properties are tied to the regularity of the solu-
tion through the dependence of the coefficients of the eikonal equation on
the solution. In particular, to close these estimates, the authors had to
show that various solution variables are one degree more differentiable
compared to the degree of differentiability guaranteed by standard energy
estimates.

4. (Structures amenable to commutations with geometric vectorfields). The
authors’ formulation is such that one can commute all of the equations
with geometric vectorfields constructed out of the eikonal function U ,
generating only controllable commutator error terms. By “controllable,”
we mean both from the point of view of regularity and from the point of
view of the strength of their singular nature. In the works [23,34,36] that
treat systems with multiple characteristic speeds, these are particularly
delicate tasks that are quite sensitive to the structure of the equations;
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one key reason behind their delicate nature is that the eikonal function
(and thus the geometric vectorfields constructed from it) can be fully
adapted only to “one speed,” that is, to the characteristics whose inter-
section correspond to the singularity.
In the remainder of this subsection, we explain why our new formulation

of the relativistic Euler equations has all four of the features listed above and
is therefore well-suited for studying shocks without symmetry assumptions.
Readers can consult the works [22,33,35] for related but extended discussion
in the case of the non-relativistic compressible Euler equations.

1.2.1. Nonlinear Geometric Optics and Geometric Coordinates. First, to im-
plement nonlinear geometric optics, one can construct an eikonal function. In
the context of the relativistic Euler equations, one would construct an eikonal
function U adapted to the acoustic characteristics, that is, a solution to the
eikonal equation

(g−1)αβ∂αU∂βU = 0, (1.6)

supplemented by appropriate initial conditions, where g = g(h, s, u) is the
acoustical metric (see Definition 2.6). Note that U is adapted to the “wave
part” of the system and not the transport part. In the context of the rel-
ativistic Euler equations, this is reasonable in the sense that the transport
part corresponds to the evolution of vorticity and entropy, and there are no
known blowup results for these quantities, even in one spatial dimension.9 Put
differently, U is adapted to the “portion” of the relativistic Euler flow that
is expected to develop singularities. More generally, eikonal functions are a
natural tool for the study of wave-like systems, regardless of whether or not
one is studying shocks. We also stress that introducing an eikonal function is
essentially the same as relying on the method of characteristics. However, in
more than one spatial dimension, the method of characteristics must be sup-
plemented with an exceptionally technical ingredient that we further describe
below: energy estimates that hold all the way up to the shock.

The first instance of an eikonal function being used to study the global
properties of solutions to a quasilinear hyperbolic PDE occurred not in the
context of singularity formation, but rather in a celebrated global existence re-
sult: the Christodoulou–Klainerman [6] proof of the stability of the Minkowski
spacetime as a solution to the Einstein vacuum equations. Alinhac’s aforemen-
tioned works [2,3] were the first instances in which an eikonal function was
used to study a non-trivial set of solutions (without symmetry assumptions) to
a quasilinear wave equation all the way up to the first singularity. Eikonal func-
tions also played a fundamental role in all of the other shock formation results
mentioned above. They have also played a role in other contexts, such as low-
regularity local well-posedness for quasilinear wave equations [20,21,30,39]. In
all of these works, the eikonal equation is a fully nonlinear hyperbolic PDE that
is coupled to the PDE system of interest (here the relativistic Euler equations)
through its coefficients [here through the acoustical metric, since g = g(h, s, u)].

9In one spatial dimension, the vorticity must vanish, but the entropy can be dynamic.
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As we mentioned above, in the case of the relativistic Euler equations, the level
sets of U are characteristics for the “wave part” of the system. Following Al-
inhac [2,3] and Christodoulou [4], in order to study the formation of shocks in
relativistic Euler solutions, one completes U to a geometric coordinate system

(t, U, ϑ1, ϑ2) (1.7)

on spacetime, where t = x0 is the Minkowski time coordinate and the ϑA are
solutions to the transport equation (g−1)αβ∂αU∂βϑA = 0 supplemented by ap-
propriate initial conditions on the initial constant-time hypersurface Σ0. Note
that (t, ϑ1, ϑ2) can be viewed as a coordinate system along each characteristic
hypersurface {U = const}.

1.2.2. Nonlinear Null Structure. We now aim to explain the role that the
nonlinear null structure of the equations played in the works [4,8,23–25,32,
34,36,37] and to explain why the equations of Theorem 1.2 enjoy the same
good structures. In total, one could say that the equations of Theorem 1.2
have been geometrically decomposed into terms that are capable of generat-
ing shocks and “harmless” terms, whose nonlinear structure is such that they
do not interfere with the shock formation mechanisms. To flesh out these no-
tions, we first provide some background material. In the works cited above,
the main idea behind proving shock formation is to study the solution rela-
tive to the geometric coordinates (1.7) and to show that in fact, the solution
remains rather smooth in these coordinates, all the way up to the shock. This
approach allows one to transform the problem of shock formation into a more
traditional one in which one tries to derive long-time estimates for the solu-
tion relative to the geometric coordinates. One then recovers the blowup of
the solution’s derivatives with respect to the original coordinates by showing
that the geometric coordinates degenerate in a precise fashion relative to the
standard rectangular coordinates as the shock forms; the degeneration is ex-
actly tied to the vanishing of the inverse foliation density μ that we mentioned
earlier. Although the above description might seem compellingly simple, as we
explain in Sect. 1.2.3, in implementing this approach, one encounters severe
analytical difficulties.

We now highlight another key aspect of the proofs in the works cited
above: showing that Euclidean-unit-length derivatives of the solution in di-
rections tangent to the characteristics remain bounded all the way up to the
shock. It turns out that in terms of the geometric coordinates (1.7), this is
equivalent to showing that the ∂

∂t and ∂
∂ϑA derivatives of the solution remain

bounded all the way up to the shock. Put differently, the following holds:
The singularity occurs only for derivatives of the solution with re-
spect to vectorfields that are transversal to the characteristics and
non-degenerate10 with respect to the rectangular coordinates.

10In all known shock formation results, at the location of shock singularities, the geometric

partial derivative vectorfield ∂
∂U

has vanishing Euclidean length (i.e., δab

(
∂

∂U

)a (
∂

∂U

)b
= 0,

where
{(

∂
∂U

)a}

a=1,2,3
denotes the rectangular spatial components of ∂

∂U
and δab is the
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In the works cited above, to prove all of these facts, the authors had to con-
trol various inhomogeneous error terms by showing that they enjoy a good
nonlinear null structure relative to the wave characteristics. A key conclusion
of the present article is that the derivative-quadratic inhomogeneous terms in
the equations of Theorem 1.2 enjoy the same good structure (which we fur-
ther describe just below). In fact, all terms on the RHSs of all equations of
Theorem 1.2 are harmless in that they do not drive the Riccati-type blowup
that lies behind shock formation. Consequently, the equations of Theorem 1.2
pinpoint the dangerous nonlinear terms in the relativistic Euler equations:

The terms capable of driving shock formation are of Riccati-type
and are hidden in the covariant wave operator terms on LHSs (1.2a)–
(1.2b). These terms become visible only when the covariant wave
operator terms are expanded relative to the standard coordinates.
In view of the above remarks, one might wonder why it is important to

“hide” the dangerous terms in the covariant wave operator. The answer is that
there is an advanced framework for constructing geometric vectorfields adapted
to wave equations, and the framework is tailored to covariant wave operators.11

As we explain later in this subsection, this geometric framework seems to be
essential in more than one spatial dimension,12 when one is forced to commute
the wave equations with suitable vectorfields and to derive energy estimates.

We now further describe the good structure found in the terms on the
RHSs of the equations of Theorem 1.2. The good nonlinear “null structure” is
found precisely in the (quadratic) null-form terms Q appearing on the RHSs of
the equations of Theorem 1.2. More precisely, these Q are null forms relative to
the acoustical metric g, which means that they are linear combinations (with
coefficients that are allowed to depend on the solution variables—but not their
derivatives) of the standard null forms relative to g (see Definition 1.1). The
key property of null forms relative to g is that given any hypersurface H that
is characteristic relative to g [e.g., any level set of any eikonal function U that
solves Eq. (1.6)], we have the following well-known schematic decomposition:

Q(∂φ, ∂ψ) = T φ · ∂ψ + T ψ · ∂φ, (1.8)

where T denotes a differentiation in a direction tangent to H and ∂ denotes
a generic directional derivative; see, for example, [22] for a standard proof
of (1.8). Equation (1.8) implies that even though Q is quadratic, it never in-
volves two differentiations in directions transversal to any characteristic. Since,

Footnote 10 continued
Kronecker delta). That is, at the shock singularities, ∂

∂U
degenerates with respect to the

rectangular coordinates. Due to this degeneracy, the solution’s ∂
∂U

derivatives can remain

bounded all the way up to the shock, even though ∂
∂U

is transversal to the characteristics.
11Roughly, these covariant wave operators are equivalent to divergence-form wave operators.
In this way, one could say that a better theory is available for divergence-form wave operators
than for non-divergence-form wave operators. This reminds one of the situation in elliptic
PDE theory, where better results are known for elliptic PDEs in divergence form compared
to ones in non-divergence form.
12In one spatial dimension, one can rely exclusively on the method of characteristics and
thus avoid energy estimates.
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in all known proofs, it is precisely the transversal derivatives that blow up when
a shock forms (since the Riccati-type terms that drive the blowup are precisely
quadratic in the transversal derivatives), we see that g-null forms are linear
in the tensorial component of the solution that blows up. This can be viewed
as the absence of the worst possible combinations of terms in Q. In terms of
the geometric coordinates (1.7), null forms do not contain any “dangerous”
terms proportional to ∂

∂U φ · ∂
∂U ψ. We also note that, obviously, the terms L

from Theorem 1.2 cannot contain any dangerous quadratic terms since they
are linear in the solution’s derivatives. In contrast, upon expanding the co-
variant wave operator terms on LHSs (1.2a)–(1.2b) relative to the standard
coordinates, one typically encounters terms that are quadratic in derivatives of
h and u that are transversal to the characteristics; as we highlighted above, it
is precisely such “Riccati-type” terms that can drive the formation of a shock.
We stress that near a shock, such transversal-derivative-quadratic terms are
much larger than the null form terms. We also stress that for the relativistic
Euler equations, one encounters such transversal-derivative-quadratic terms
on LHSs (1.2a)–(1.2b) under any equation of state aside from a single ex-
ceptional one. In the irrotational and isentropic case (in which case the rel-
ativistic Euler equations reduce to a quasilinear wave equation satisfied by a
potential function), this exceptional equation of state was identified in [4]; it
corresponds to the quasilinear wave equation satisfied by a timelike minimal
surface graph in an ambient Minkowski spacetime, which can be expressed as

follows: ∂α

{
(η−1)αβ∂βΦ

√
1 + (η−1)κλ(∂κΦ)(∂λΦ)

}

= 0.

In view of the previous paragraph, we would like to highlight the following
point:

Proofs of shock formation are unstable under typical perturbations
of the equations by nonlinear terms that are of quadratic
or higher order in derivatives. However, proofs of shock formation
for wave equations typically are stable under perturbations of the
equations by null forms that are adapted to the metric of the shock-
forming wave. By “stable,” we mean in the following sense: as the
shock forms, null form terms become “asymptotically negligible”
compared to the shock-driving terms (for the reasons described
above).

The reason that the precise structure of the nonlinearities is so important for
the proofs is that the known framework is designed precisely to handle specific
kinds of singularity-driving derivative-quadratic terms: the kind that are hid-
den in the covariant wave operator terms on LHSs (1.2a)–(1.2b). In the context
of the relativistic Euler equations, this means that if any of the equations of
Theorem 1.2 had contained, on the right-hand side, an inhomogeneous non-g-
null-form quadratic term of type (∂h)2, ∂u · ∂h, (∂u)2, etc., or a term of type
(∂h)3, (∂h)4, etc., then the only known framework for proving shock formation
would not work. The difficulty is that adding such terms to the equation could
in principle radically alter the expected blowup rate or even altogether prevent
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the formation of a singularity; either way, this would invalidate13 the known
approach for proving shock formation. One might draw an analogy with the
Riccati ODE ẏ = y2, which we suggest as a caricature model for the formation
of shocks (in the case of the relativistic Euler equations, y should be identified
with ∂h and/or ∂u). Note that for all data y(0) = y0 with y0 > 0, the solution
to the Riccati ODE blows up in finite time. Now if one perturbs the Riccati
ODE to obtain the perturbed equation ẏ = y2 ± εy3, with ε a small positive
number, then depending on the sign of ±, the perturbed solutions with y0 > 0
will either exist for all time or will blow up at a quite different rate compared
to the blowup rate for the unperturbed equation.

1.2.3. Regularity Properties and Singular High-Order Energy Estimates. In
the rigorous mathematical study of quasilinear hyperbolic PDEs in more than
one spatial dimension, one is forced to derive energy estimates for the solution’s
higher derivatives by commuting the equations with appropriate differential
operators. Indeed, all known approaches to studying even the basic local well-
posedness theory for such equations rely on deriving estimates in L2-based
Sobolev spaces. In the works [4,8,23–25,32,34,36,37] on shock formation in
multiple spatial dimensions, the authors controlled the solutions’ higher geo-
metric derivatives by differentiating the equations with geometric “commuta-
tor vectorfields” Z that are adapted to the characteristics, more precisely to
the characteristics corresponding to the variables that form a shock singularity.
As we mentioned earlier, the Z are designed to avoid generating uncontrollable
commutator error terms. It turns out that all Z that have been successfully
used to study shock formation have the schematic structure Zα ∼ ∂U , where
Zα denotes a rectangular component of Z and U is the eikonal function.

Although the geometric vectorfields Z exhibit good commutation prop-
erties with the differential operators corresponding to the characteristics to
which they are adapted, the regularity theory of the vectorfields themselves
is very delicate and is intimately tied to that of the solution. We now further
explain this fact in the context of wave equations whose principal operator is
(g−1)αβ∂α∂β . The corresponding eikonal equation is the nonlinear transport
equation (g−1)αβ∂αU∂βU = 0. The key point is that the standard regularity
theory of transport equations yields only that U is as regular as its coefficients,
that is, as regular as gαβ . In the context of the relativistic Euler equations
(where the formation of a shock corresponds to the intersection of the wave
characteristics and g = g(h, s, u)), this suggests that one might expect U to be
only as regular as h, s, and u. Since, as we mentioned in the previous paragraph,
we have Zα ∼ ∂U , this leads to the following severe difficulty: In commuting
equation the wave equation (1.2a) with Z, one obtains the wave equation

13As is explained in [22], in the known framework for proving shock formation, one crucially
relies on the fact that the derivatives of the solution blow up at a linear rate, that is like

C
T(Lifespan)−t

, where C is a constant and T(Lifespan) > 0 is the (future) classical lifespan of

the solution; if one perturbs the equation by adding terms that are expected to alter this
blowup rate, then one should expect that the known approach for proving shock formation
will not work (at least in its current form).
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�g(Zh) = �gZ
α · ∂αh + · · · ∼ ∂3U · ∂h + · · · (one would obtain similar wave

equations for Zs and Zuα upon commuting equations (1.2b) and (1.2c) with
Z). The difficulty is that the above discussion suggests that the factor ∂3U can
be controlled only in terms of three derivatives of h, s, and u, while standard
energy estimates for the wave equations �g(Zh) = · · · , �g(Zs) = · · · , and
�g(Zuα) = · · · yield control of only two derivatives of h, s, and u. This sug-
gests that there is a loss of regularity and in fact, this is the reason that Alinhac
used Nash–Moser estimates in his works [2,3]. However, for wave equations,
one can in fact overcome this loss of regularity by exploiting some delicate
tensorial properties of the eikonal equation (g−1)αβ∂αU∂βU = 0 and of the
wave equation itself relative to geometric coordinates, which together can be
used to show that in directions tangent to the characteristics, some geometric
tensors constructed out of the derivatives of U are one degree more differ-
entiable than one might naively expect. In particular, the factor ∂3U in the
aforementioned product ∂3U · ∂h has special structure and enjoys this gain
in regularity. These crucial structures were first observed by Christodoulou–
Klainerman in their proof [6] of the stability of Minkowski spacetime as a
solution to Einstein’s equations, and later by Klainerman–Rodnianski in their
proof of improved regularity local well-posedness [20] for a general class of
scalar quasilinear wave equations. In total, using this gain in regularity along
the characteristics and carefully accounting for the precise tensorial structure
of the product ∂3U ·∂h highlighted above, one can avoid the loss of derivatives
tied to the product ∂3U · ∂h.

Despite the fact that the procedure described above allows one to avoid
losing derivatives, at least in the context of wave equations,14 one pays a steep
price: It turns out that upon implementing this procedure, one introduces a
dangerous factor into the wave equation energy identities, one that in fact
blows up as the shock forms. More precisely, the singular factor is 1/μ, where
μ is the inverse foliation density mentioned earlier, with μ → 0 signifying the
formation of a shock. This leads to singular top-order a priori energy estimates
for the wave equation solutions relative to the geometric coordinates. At first
glance, these singular geometric energy estimates might seem to obstruct the
philosophy of obtaining regular estimates relative to the geometric coordinates.
However, below the top derivative level, one can allow the loss of a derivative,
and it turns out that this allows one to derive improved (i.e., less singular)
energy estimates below the top derivative level. In fact, by an induction-from-
the-top-down argument, one can show that the mid-derivative-level and below
geometric energies remain bounded up to the shock. This allows one to show
that indeed, the solution remains rather smooth relative to the geometric co-
ordinates, which in practice is a crucial ingredient that is needed to close the
proof. It also turns out that many steps are needed to descend to the level of
a non-singular energy, which in practice means that one must assume that the

14Actually, it is not known whether or not the derivative-loss-avoiding procedure can be
implemented for general systems of wave equations featuring more than one distinct wave
operator. From this perspective, we find it fortunate that the equations of Theorem 1.2
feature only one wave operator.
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data have a lot of Sobolev regularity to close the proof; see [14] for an in-depth
overview of these issues in the context of quasilinear wave equations.

The structures described above, which allow one to avoid the loss of
derivatives in eikonal functions for quasilinear wave equations, are rather deli-
cate. Thus, it is not a priori clear that one can also avoid the loss of derivatives
in eikonal functions for the relativistic Euler equations. A key advantage of our
new formulation of the relativistic Euler equations is that it can be used to
prove that one can still avoid the loss of derivatives, even though there is deep
coupling between the wave and transport equations in the new formulation.
That is, one can show that the acoustic eikonal function U [see (1.6), where
g = g(h, s, u) is the acoustical metric from Definition 2.6] for the relativis-
tic Euler equations has enough regularity to be used in the study of shock
formation; see three paragraphs below for further discussion. However, this
requires one to first prove that the fluid variables have a consistent amount
of regularity among themselves. At first thought, the desired consistency of
regularity might seem to follow from standard local well-posedness. However,
all standard local well-posedness results for the relativistic Euler equations
are based on first-order formulations, which are not known to be sufficient for
avoiding a loss of derivatives in the eikonal function U ; the above outline for
how to avoid derivative loss in U implicitly relied on the assumption that h,
s, and uα solve wave equations whose source terms have an allowable amount
of regularity, which, as we will explain, for the relativistic Euler equations is
a true—but deep—fact. Moreover, the first-order formulations do not seem
to be sufficient for studying solutions all the way up to a shock; as we have
mentioned, the known framework for studying shocks crucially relies on the
special null structures exhibited by the equations of Theorem 1.2.

In view of the regularity concerns raised in the previous paragraph, one
must carefully check that (under suitable assumptions on the initial data),
all terms in the equations of Theorem 1.2 have a consistent amount of reg-
ularity. We stress that this is not obvious, as we now illustrate by count-
ing derivatives. For example, to control ∂uα in L2 using standard energy
estimates for the wave equation (1.2b), one must control, also in L2, the
source term Cα on RHS (1.2b). Note that from the point of view of regu-
larity, we have the schematic relationship [see (2.16a) for the definition of Cα]
Cα ∼ vortα(�) ∼ ∂�. Moreover, since � solves the transport equation (1.3c),
whose source term depends on ∂u and ∂h, this suggests that ∂� should be
no more regular15 than (∂2u, ∂2h) and thus Cα should be no more regular
than (∂2u, ∂2h). In total, this discussion suggests that the wave equation for
u has the following schematic structure from the point of view of regularity:
�gu

α = ∂2u+ · · · . That is, this discussion suggests that in order to control ∂u
in L2 using standard energy estimates for wave equations, we must control ∂2u
in L2. This approach therefore seems to lead to a loss in derivatives, which is
a serious obstacle to using the equations of Theorem 1.2 to prove any rigorous

15In the absence of special structures, solutions to transport equations are not more regular
than their source terms.
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result. Similar difficulties arise in the study of h and s, due to the source term
D in the wave equations (1.2a) and (1.2c).

A crucial feature of the equations of Theorem 1.2 is that one can in fact
overcome the loss of derivative difficulty for the fluid variables described in
the previous paragraph. To this end, one must rely on the transport-div-curl
equations for � and S; see Sect. 9.5 and the proofs of Proposition 9.22 and
Theorem 9.12 for the details on how one can use these equations and elliptic
estimates to avoid the loss of derivatives. Equally important for applications to
shock waves is the fact that the elliptic div-curl estimates, which occur across
space, are compatible with the proof of the formation of a spatially localized
shock singularity and with the singular high-order geometric energy estimates
described earlier in this subsubsection. These are delicate issues, especially
since the elliptic estimates involve derivatives in directions transversal to the
characteristics, i.e., in the singular directions; see [22] for an overview of how to
derive the relevant elliptic estimates in the context of shock-forming solutions
to the non-relativistic compressible Euler equations.

We now return to the issue of the regularity of the acoustic eikonal func-
tion U for the relativistic Euler equations [see (1.6), where g = g(h, s, u) is the
acoustical metric from Definition 2.6]. As we explained above, in order to avoid
a loss of regularity in U , one needs to show that its regularity theory is com-
patible with the regularity of the fluid variables. It turns out that this requires
proving, in particular, that �gh, �gs, and �gu

α have the same regularity as
∂h, ∂s, and ∂uα. The connection between �gh, �gs, and �gu

α and the reg-
ularity theory of U is through the null mean curvature of the level sets of U ,
a critically important geometric quantity whose evolution equation16 depends
on a certain component of the Ricci curvature tensor of the Lorentzian met-
ric g(h, s, u), whose rectangular components can be shown to depend on �gh,
�gs, and �gu

α. We will not further discuss this crucial technical issue here; we
instead refer readers to [14, Section 3.4] for further discussion of the regularity
theory of eikonal functions in the context of shock formation for quasilinear
wave equations. In view of the wave equations (1.2a)–(1.2c), we see that ob-
taining the desired regularity for �gh, �gs, and �gu

α requires, in particular,
establishing that the source terms Cα and D on RHSs (1.2a)–(1.2c) have the
same regularity as ∂h, ∂s, and ∂uα. This is again tantamount to showing that
the vorticity and entropy are one degree more differentiable compared to the
regularity guaranteed by deriving standard energy estimates for first-order for-
mulations of the equations; to obtain the desired extra regularity for Cα and
D, one can again rely on the transport-div-curl equations mentioned in the
previous paragraph. We prove a rigorous version of this gain in regularity in
Theorem 9.12, in which we use the new formulation of the relativistic Euler
equations to prove a local well-posedness result that, in particular, yields the
desired extra differentiability (assuming that it is present in the initial data).

16The evolution equation is in fact the famous Raychaudhuri equation, which plays an
important role in general relativity.
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Although one might view the results of Theorem 9.12 as expected conse-
quences of our new formulation of the relativistic Euler equations, we highlight
that its proof relies on a few ingredients that are not entirely straightforward:

(i) Time-continuity for the L2 norms of the vorticity and entropy at top-
order, i.e., including the extra differentiability of these variables, is non-
standard in view of the necessity of invoking elliptic–hyperbolic estimates.

(ii) The transport-div-curl systems featured in the new formulation of the
equations involve spacetime divergence and curl operators, but we need to
extract L2 regularity along the constant-time hypersurfaces. This requires
connecting the spacetime divergence and curl to spatial elliptic estimates,
which in turn requires some geometric and technical insights.

(iii) For the wave equation energy estimates, one cannot use the multiplier17

∂t when the three-velocity is large, since the corresponding energy will
not necessarily be coercive18 in this case. Consequently, one has to use
the four-velocity as a multiplier.19

1.2.4. Structures Amenable to Commutations with Geometric Vectorfields.
A key point is that the geometric vectorfields Z described in Sect. 1.2.3 are
adapted only to the principal part of the shock-forming solution variables, e.g.,
the operator �g in the case that a wave equation solution is the shock-forming
variable. However, to close the proof of shock formation for a system in which
wave equations of the type �g· = · · · are coupled to other equations, one
must commute that Z through all of the equations in the system. One then
has to handle the commutator terms generated by commuting the Z through
the other equations. It turns out, perhaps not surprisingly, that commuting Z
through a generic second-order differential operator ∂2 leads to uncontrollable
error terms, from the point of view of regularity and from the point of view of
the singular nature of the commutator error terms; see the work [22] on the
non-relativistic compressible barotropic Euler equations for further discussion
on this point. However, as was first shown in [22], it is possible to commute the
Z through an arbitrary first-order differential operator ∂ by first weighting it
by μ (where μ is the inverse foliation density mentioned above); it can be shown

17See Sect. 9.6.1 for additional details regarding the multiplier method in the context of
wave equations.
18Equations (2.11), (2.20), and (2.13a) collectively imply that when

∑3
a=1 |ua| is large,

g(∂t, ∂t) = g00 = −1 + (c−2 − 1)uaua can be positive, i.e., ∂t can be spacelike with respect
to the acoustical metric g; it is well known that this can lead to indefinite energies if the
standard partial time derivative vectorfield ∂t is used as a multiplier in the wave equation
energy estimates.
19The use of u as a multiplier is likely familiar to researchers who have previously studied
the relativistic Euler equations, but it might be unknown to the broader PDE community.
We also remark that in searching the literature, we were unable to find results that, given
our new formulation of the relativistic Euler equations, could be directly applied to establish
points (i) and (ii) above. Moreover, we were not able to locate a local well-posedness result
for elliptic–hyperbolic systems that can be directly applied to our new formulation of the
equations. In particular, we could not locate a result that would directly imply continuous
dependence of solutions on the initial data up to top order, i.e., a result that applies in the
case when the vorticity and entropy enjoy the aforementioned extra regularity.
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that this leads to commutator error terms that are controllable under the scope
of the approach. It is for this reason that we have formulated Theorem 1.2 in
such a way that all of the equations are of the type �g· = · · · or are first-
order; i.e., the equations of Theorem 1.2 are such that the approach described
in [22] can be applied. Put differently, the geometric vectorfields Z that are
of essential importance for commuting the wave equations of Theorem 1.2 can
also be commuted through all of the remaining equations, generating only
controllable error terms.

2. A First-Order Formulation of the Relativistic Euler
Equations, Geometric Tensorfields, and the Modified Fluid
Variables

In this section, we introduce some notation, define the fluid variables that play
a role in the subsequent discussion, introduce some geometric tensorfields as-
sociated to the flow, and provide the standard first-order formulation of the
relativistic Euler equations that will serve as a starting point for our main
results. Most of the discussion here is standard and therefore, we are some-
what terse; we refer readers to [4, Chapter 1] for a detailed introduction to the
relativistic Euler equations. Section 2.2.5, however, is not standard. In that
subsubsection, we define modified fluid variables, which are special combina-
tions of the derivatives of the vorticity and entropy. The structures revealed by
Theorem 3.1 imply (see the proof of Theorem 9.12 for additional details) that
these special combinations enjoy a gain of one derivative compared to the reg-
ularity afforded by standard estimates. As we mentioned in the introduction,
this gain is crucial for applications to shock waves.

2.1. Notation and Conventions

We somewhat follow the setup of [4], but there are some differences, including
sign differences and notational differences.

Greek “spacetime” indices α, β, . . . take on the values 0, 1, 2, 3, while
Latin “spatial” indices a, b, . . . take on the values 1, 2, 3. Repeated indices are
summed over (from 0 to 3 if they are Greek, and from 1 to 3 if they are
Latin). Greek and Latin indices are lowered and raised with the Minkowski
metric η and its inverse η−1, and not with the acoustical metric g of Defini-
tion 2.6. Moreover, εαβγδ denotes the fully antisymmetric symbol normalized
by ε0123 = 1. Note that ε0123 = −1.

If Xα is a vectorfield and ξα1···αl

β1···βm
is a type

(
l
m

)
tensorfield, then

(LXξ)α1···αl

β1···βm
= Xκ∂κξα1···αl

β1···βm
−

l∑

a=1

(∂κXαa)ξα1···αa−1καa+1···αl

β1···βm

+
m∑

b=1

(∂βb
Xκ)ξα1···αl

β1···βb−1κβb+1···βm
(2.1)

denotes the Lie derivative of ξ with respect to X.
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We derive all of our results relative to a Minkowski-rectangular coordi-
nate system {xα}α=0,1,2,3, that is, a coordinate system on R

1+3 in which the
Minkowski metric η takes the form ηαβ := diag(−1, 1, 1, 1). {∂α}α=0,1,2,3 de-
notes the corresponding rectangular coordinate partial derivative vectorfields.
We sometimes use the alternate notation x0 := t and ∂t := ∂0.

Throughout, d denotes the exterior derivative operator. In particular,
if f is a scalar function, then (df)α := ∂αf , and if V is a one-form, then
(dV )αβ := ∂αVβ − ∂βVα. We use the notation V� to denote the one-form that
is η-dual to the vectorfield V , i.e., (V�)α := ηακV κ.

2.2. Definitions of the Fluid Variables and Related Geometric Quantities

In this subsection, we define the fluid variables and geometric quantities that
play a role in the subsequent discussion.

2.2.1. The Basic Fluid Variables. The fluid four velocity uα is future-directed
and normalized by uαuα = −1. p denotes the pressure, ρ denotes the proper
energy density, n denotes the proper number density, s denotes the entropy
per particle, θ denotes the temperature, and

H = (ρ + p)/n (2.2)

is the enthalpy per particle. Thermodynamics supplies the following laws:

H =
∂ρ

∂n
|s , θ =

1
n

∂ρ

∂s
|n , dH =

dp

n
+ θds, (2.3)

where ∂
∂n |s denotes partial differentiation with respect to n at fixed s and

∂
∂s |n denotes partial differentiation with respect to s at fixed n. Below we
employ similar partial differentiation notation, and in Definition 2.7, we intro-
duce alternate partial differentiation notation, which we use throughout the
remainder of the article.

2.2.2. The u-orthogonal Vorticity of a One-Form and Auxiliary Fluid Vari-
ables. In this subsubsection, we define some auxiliary fluid variables that will
play a role throughout the paper. By “auxiliary,” we mean that they are de-
termined by the variables introduced in Sect. 2.2.1.

We start by defining the u-orthogonal vorticity of a one form.

Definition 2.1 (The u-orthogonal vorticity of a one form). Given a one-form
V , we define the corresponding u-orthogonal vorticity vectorfield as follows:

vortα(V ) := −εαβγδuβ∂γVδ. (2.4)

Definition 2.2 (Vorticity vectorfield). We define the vorticity vectorfield �α as
follows:

�α := vortα(Hu) = −εαβγδuβ∂γ(Huδ). (2.5)

We find it convenient to work with the natural log of the enthalpy.

Definition 2.3 (Logarithmic enthalpy). Let H > 0 be a fixed constant value of
the enthalpy. We define the (dimensionless) logarithmic enthalpy h as follows:

h := ln
(
H/H

)
. (2.6)
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Definition 2.4 (The quantity q). We define the quantity q as follows:

q :=
θ

H
. (2.7)

Definition 2.5 (Entropy gradient one-form). We define the entropy gradient
one-form Sα as follows:

Sα := ∂αs. (2.8)

2.2.3. Equation of State and Speed of Sound. To obtain a closed system of
equations, we assume an equation of state of the form p = p(ρ, s). The speed
of sound is defined by

c :=

√
∂p

∂ρ
| s. (2.9)

For reasons that will become clear in Sect. 2.3, in the rest of the article, we
view the speed of sound to be a function of h and s:

c = c(h, s). (2.10)

In this article, we will confine our study to equations of state and solutions
that verify

0 < c ≤ 1. (2.11)

The upper bound in (2.11) signifies that the speed of sound is no bigger than
the speed of light. In this article, we exploit both inequalities in (2.11). We
use the bound c ≤ 1 to ensure that we can always solve for time derivatives
of the solution in terms of spatial derivatives; see the discussion surrounding
Eq. (2.28). The bound c > 0 is important because some of the equations
featured in Theorem 3.1 contain factors of c−1.

2.2.4. Projection Onto the Minkowski-Orthogonal Complement of the Four-
Velocity and the Acoustical Metric. We start by introducing the tensorfield
Παβ , defined by

Παβ := (η−1)αβ + uαuβ . (2.12)

It is straightforward to see Π is the projection onto the η-orthogonal comple-
ment of u. In particular, Πακuκ = 0.

We now introduce the acoustical metric g. It is a Lorentzian20 metric
that drives the propagation of sound waves.

Definition 2.6 (Acoustical metric and its inverse). We define the acoustical
metric gαβ and its inverse21 (g−1)αβ as follows:

gαβ := c−2ηαβ + (c−2 − 1)uαuβ , (2.13a)

(g−1)αβ := c2Παβ − uαuβ = c2(η−1)αβ + (c2 − 1)uαuβ . (2.13b)

20That is, the signature of the 4×4 matrix gαβ , viewed as a quadratic form, is (−, +, +, +).
21It is straightforward to check that (g−1)ακgκβ = δα

β , where δα
β is the Kronecker delta.

That is, g−1 is indeed the inverse of g.
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It is straightforward to compute that relative to the rectangular coordi-
nates, we have

detg = −c−6, (2.14a)

|detg|1/2(g−1)αβ = c−1(η−1)αβ + (c−1 − c−3)uαuβ . (2.14b)

The notation featured in the next definition will allow for a simplified
presentation of various equations.

Definition 2.7 (Partial derivatives with respect to h and s). If Q is a quantity
that can be expressed as a function of (h, s), then

Q;h = Q;h(h, s) :=
∂Q

∂h
|s , (2.15a)

Q;s = Q;s(h, s) :=
∂Q

∂s
|h , (2.15b)

where ∂
∂h |s denotes partial differentiation with respect to h at fixed s and

∂
∂s |h denotes partial differentiation with respect to s at fixed h.

2.2.5. Modified Fluid Variables. In our analysis, we will have to control the
vorticity of the vorticity, that is, vortα(�). The following modified version of
vortα(�), denoted by Cα obeys a transport equation [see (3.11b)] with a better
structure (from the point of view of the regularity of the RHS and also the
null structure of the RHS) than the one satisfied by vortα(�). Similar remarks
apply to the modified version of the divergence of entropy gradient, which we
denote by D [see Eq. (3.9a) for the transport equation verified by D].

Definition 2.8 (Modified fluid variables).

Cα := vortα(�) + c−2εαβγδuβ(∂γh)�δ

+ (θ − θ;h)Sα(∂κuκ) + (θ − θ;h)uα(Sκ∂κh)

+ (θ;h − θ)Sκ((η−1)αλ∂λuκ), (2.16a)

D :=
1
n

(∂κSκ) +
1
n

(Sκ∂κh) − 1
n

c−2(Sκ∂κh). (2.16b)

2.3. A Standard First-Order Formulation of the Relativistic Euler Equations

In formulating the relativistic Euler equations as a first-order hyperbolic sys-
tem, we will consider h, s, and {uα}α=0,1,2,3 to be the fundamental unknowns.22

In terms of these variables and the quantities defined in (2.9), (2.12), and (2.7),
the relativistic Euler equations are

uκ∂κh + c2∂κuκ = 0, (2.17)

uκ∂κuα + Πακ∂κh − q(η−1)ακ∂κs = 0, (2.18)

uκ∂κs = 0. (2.19)

22On might argue that it is more accurate to think of u0 as being “redundant” in the sense
that it is algebraically determined in terms of {ua}a=1,2,3 via the condition u0 > 0 and
the normalization condition (2.20). In fact, in most of Sect. 9, we adopt this point of view.
However, prior to Sect. 9, we do not adopt this point of view.



M. M. Disconzi, J. Speck Ann. Henri Poincaré

It is straightforward to see that the following constraint is preserved by the
flow of Eqs. (2.18)–(2.19).

uκuκ = −1. (2.20)

Remark 2.9 (More common first-order formulations). Many authors define the
relativistic Euler equations to be the system comprising (2.20), (2.25), and the
four equations ∂κTακ = 0, where Tαβ := (ρ+ p)uαuβ + p(η−1)αβ is the fluid’s
energy–momentum tensor. These equations are in fact equivalent (at least in
the case of C1 solutions with ρ > 0) to Eqs. (2.17)–(2.20). We refer readers
to [4, Chapter 1] for background material that is sufficient for understanding
the equivalence.

Note that (2.19) is equivalent to

uκSκ = 0. (2.21)

Equation (2.18) can be written more explicitly as

uκ∂κuα + ∂αh + uαuκ∂κh − qSα = 0. (2.22)

Also, from (2.22), we easily derive

uκ∂κ(Huα) + ∂αH − θSα = 0. (2.23)

Moreover, differentiating (2.19) with a rectangular coordinate partial de-
rivative, we deduce

uκ∂κSα = −Sκ(∂αuκ). (2.24)

In our analysis, we will also use the following evolution equation for n:

uκ∂κn + n∂κuκ = 0. (2.25)

To obtain (2.25), we first use Eqs. (2.17) and (2.19), the thermodynamic
relation dH = dp/n + θds, and the relation H = (ρ + p)/n to deduce
uκ∂κp + c2(ρ + p)∂κuκ = 0. We then use this equation, (2.9), and (2.19)
to deduce uκ∂κρ + (ρ + p)∂κuκ = 0. Next, using this equation and Eq. (2.19),
we deduce ∂ρ(n,s)

∂n |s uκ∂κn + (ρ + p)∂κuκ = 0. Finally, from this equation and
the thermodynamic relation ρ + p = n∂ρ(n,s)

∂n |s , we conclude (2.25).
For future use, we also note that Eqs. (2.17)–(2.19) can be written [us-

ing (2.20)] in the form

Aα∂α

⎛

⎜⎜
⎜⎜⎜⎜
⎝

h
u0

u1

u2

u3

s

⎞

⎟⎟
⎟⎟⎟⎟
⎠

= 0, (2.26)
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where for α = 0, 1, 2, 3, Aα is a 6 × 6 matrix that is a smooth function of the
solution array (h, u0, u1, u2, u3, s). In particular, we compute that

A0 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

u0 c2 0 0 0 0
uaua u0 0 0 0 q
u0u1 0 u0 0 0 0
u0u2 0 0 u0 0 0
u0u3 0 0 0 u0 0

0 0 0 0 0 u0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

, (2.27)

and we compute that

detA0 = (u0)6 − c2(u0)4uaua = (1 + uaua)4
{
1 + (1 − c2)ubu

b
}

. (2.28)

In particular, in view of (2.11), we deduce from (2.28) that A0 is invertible.

3. The New Formulation of the Relativistic Euler Equations

In the next theorem, we provide the main result of the article: the new formu-
lation of the relativistic Euler equations.

Theorem 3.1 (New formulation of the relativistic Euler equations). For C3

solutions (h, s, uα) to the relativistic Euler equations (2.17)–(2.19) + (2.20),
the following equations hold, where the phrase “g-null form” refers to a linear
combination of the standard g-null forms of Definition 1.1 with coefficients
that are allowed to depend on the quantities (h, s, uα, Sα,�α) (but not their
derivatives).

Wave equations. The logarithmic enthalpy h verifies the following covariant
wave equation (see Footnote 5 on pg. 6 for a formula for the covariant wave
operator):

�gh = nc2qD + Q(h) + L(h), (3.1)

where Q(h) is the g-null form defined by

Q(h) := −c−1c;h(g−1)κλ(∂κh)(∂λh)

+ c2
{
(∂κuκ)(∂λuλ) − (∂λuκ)(∂κuλ)

}
, (3.2a)

and L(h), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(h) :=
{
(1 − c2)q + c2q;h − cc;s

}
(Sκ∂κh) + c2q;sSκSκ. (3.2b)

Moreover, the rectangular four-velocity components23 uα verify the fol-
lowing covariant wave equations:

�gu
α = − c2

H
Cα + Q(uα) + L(uα), (3.3)

23We stress that on LHS (3.3), the components uα are treated as scalar functions under the
action of the covariant wave operator �g .
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where Q(uα) is the g-null form defined by

Q(uα) := (η−1)αλ {(∂κuκ)(∂λh) − (∂λuκ)(∂κh)}
+ c2uα

{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}

− {1 + c−1c;h

}
(g−1)κλ(∂κh)(∂λuα), (3.4a)

and L(uα), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(uα) := − c2

H
εαβγδ(∂βuγ)�δ +

(1 − c2)
H

εαβγδuβ(∂γh)�δ

+
(1 − c2)q

H
εαβγδSβuγ�δ

+ {q − cc;s} (Sκ∂κuα) + q(c2 − 1)uαSκ(uλ∂λuκ)

+ Sκ

{
c2q +

(θ − θ;h)c2

H

}
((η−1)αλ∂λuκ)

+
{
2c−1c;hqSα + 2c−1c;sS

α − q;hSα
}

(uκ∂κh)

+ Sα

{
(θ − θ;h)c2

H
− q

}
(∂κuκ) +

(θ − θ;h)c2

H
uα(Sκ∂κh). (3.4b)

Auxiliary wave equation for s. The entropy s verifies the following covari-
ant wave equation24:

�gs = c2nD + L(s), (3.5)

where L(s), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(s) :=
{
1 − c2 − cc;h

}
(Sκ∂κh) − cc;sSκSκ. (3.6)

Transport equations. The rectangular components of the entropy gradient
vectorfield Sα, whose η-dual is defined in (2.8), verify the following transport
equations:

uκ∂κSα = −Sκ((η−1)αλ∂λuκ). (3.7)

Moreover, the rectangular components of the vorticity vectorfield �α,
which is defined in (2.5), verify the following transport equations:

uκ∂κ�α = −uα(�κ∂κh) + �κ∂κuα − �α(∂κuκ)

+ (θ − θ;h)εαβγδuβ(∂γh)Sδ + quα�κSκ. (3.8)

Transport-div-curl systems. The modified divergence of the entropy gradi-
ent D [which is defined in (2.16b)] and the rectangular components vortα(S)

24The wave equation (3.5) is auxiliary in the sense that we do not use it in our proof of
Theorem 9.12. However, in applications (for example, in the study of shock formation), one
has to compute �g applied to the scalar component functions gαβ , and, by virtue of the

chain rule, the quantity �gs arises in such computations. It is for this reason that we have

included Eq. (3.5) in this paper.



Relativistic Euler

of the u-orthogonal vorticity of the entropy gradient vectorfield [see defini-
tion (2.4)] verify the following transport-div-curl system:

uκ∂κD =
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2uκ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+
SκCκ

nH
+ Q(D) + L(D), (3.9a)

vortα(S) = 0, (3.9b)

where Q(D) is the g-null form defined by

Q(D) :=
1
n

c−2Sκ
{
(∂κuλ)(∂λh) − (∂λuλ)(∂κh)

}
, (3.10a)

and L(D), which is linear in the derivatives of (h, s, uα, Sα,�α), is defined by

L(D) :=
(1 − c−2)

nH
εαβγδSαuβ(∂γh)�δ +

1
nH

εαβγδSα(∂βuγ)�δ

+
SκSλ

n

{
(θ − θ;h)

H
− 2q

}
(∂κuλ)

+
SκSκ

n

{
(θ;h − θ)

H
+ 2c−1c;s − c2q;h + q

}
(∂λuλ). (3.10b)

Finally, the divergence of the vorticity vectorfield �α (which is defined
in (2.5)) and the rectangular components Cα of the modified vorticity of the
vorticity (which is defined in (2.16a)) verify the following equations:

∂α�α = −�κ∂κh + 2q�κSκ, (3.11a)

uκ∂κCα = Cκ∂κuα − 2Cα(∂κuκ) + uαCκ(uλ∂λuκ)

− 2εαβγδuβ(∂γ�κ)(∂δuκ)

+ (θ;h − θ)
{
(η−1)ακ + 2uαuκ

}{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+ (θ − θ;h)nuα(uκ∂κh)D
+ (θ − θ;h)qSα(∂κSκ) + (θ;h − θ)qSκ((η−1)αλ∂λSκ)

+ Q(Cα) + L(Cα), (3.11b)

where Q(Cα) is the g-null form defined by

Q(Cα) := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)}
+
{
(θ;h;h − θh) + c−2(θ − θ;h)

}
uκ(η−1)αλSβ×

{(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h − θ)Sκuλ {(∂κuα)(∂λh) − (∂λuα)(∂κh)}
+ (θ;h − θ)

{
(η−1)ακ + uαuκ

}
Sβ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}
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+ (θ;h − θ)Sα
{
(∂κuλ)∂λuκ − (∂λuλ)(∂κuκ)

}

+ (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+ Sα
{
c−2(θh − θ;h;h) + c−4(θ;h − θ)

}
(g−1)κλ(∂κh)(∂λh), (3.12a)

and L(Cα), which is linear in the derivatives of (h, s, uα, Sα,�α), is defined by

L(Cα) :=
2q

H
(�κSκ�α) − 2

H
�α(�κ∂κh)

+ 2c−3c;sε
αβγδuβSγ�δ(uκ∂κh)

− 2qεαβγδuβSγ�κ(∂δuκ) − qεαβγδSβuγ�δ(∂κuκ)

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + c−2qεαβγδSβ(∂γh)�δ

− c−2quαεκβγδSκuβ(∂γh)�δ

+ (θ;h − θ)qSκSκ(uλ∂λuα)

+ uαSκSκ {(θ;h − θ)q + (θ;h;s − θ;s)} (uλ∂λh)

+ Sα {(θ;s − θ;h;s) + (θ − θ;h)q;h} (Sκ∂κh)

+ SκSκ{(θ;h;h − θh)q + (θ;h;s − θ;s) + (θ − θ;h)qc−2 + (θ;h − θ)q;h}×
((η−1)αλ∂λh). (3.12b)

Remark 3.2 (Special structure of the inhomogeneous terms). We emphasize
the following two points, which are of crucial importance for applications to
shock waves (see Sect. 1.2.2 for further discussion): (i) all inhomogeneous terms
on the RHSs of the equations of the theorem are at most quadratic in the
derivatives of (h, s, uα, Sα,�α) and (ii) all derivative-quadratic terms on the
RHSs of the equations of the theorem are linear combinations of standard g-
null forms. In particular, the following are linear combinations of standard g-
null forms, even though we did not explicitly state so in the theorem: the terms
on the first and second lines of RHS (3.9a) and the terms on the second and
third lines of RHS (3.11b). We have separated these null forms, which involve
the derivatives of � and S, because they need to be handled with elliptic
estimates, at least at the top derivative level (see the proof of Theorem 9.12).
This is different compared to the terms Q(h), Q(uα), Q(D), and Q(Cα), which
can be handled with standard energy estimates at all derivative levels.

Proof. Theorem 3.1 follows from a lengthy series of calculations, most of which
we derive later in the paper, except that we have somewhat reorganized (using
only simple algebra) the terms on the right-hand sides of the equations of the
theorem. More precisely, we prove (3.1)–(3.2b) in Proposition 5.2.

We prove (3.3)–(3.4b) in Proposition 5.3.
We prove (3.5)–(3.6) in Proposition 5.4.
Equation (3.7) follows from raising the indices of (2.24) with the inverse

Minkowski metric.
We prove (3.8) in Proposition 7.1.
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Except for (3.9b), (3.9a)–(3.10b) follow from Proposition 6.2.
Equation (3.9b) is a simple consequence of definition (2.4) and the symme-
try property ∂αSβ = ∂βSα [see (4.1)].

Finally, we prove (3.11a)–(3.12b) in Proposition 8.2. �

4. Preliminary Identities

In the next lemma, we derive some preliminary identities that we will later
use when deriving the equations stated in Theorem 3.1.

Lemma 4.1 (Some useful identities). Assume that (h, s, uα) is a C2 solution
to (2.17)–(2.19) + (2.20), and let Vα be any C1 one-form. Then the following
identities hold:

∂αSβ = ∂βSα, (4.1)

�κuκ = 0, (4.2)

κ∂αuκ = 0, (4.3)

uκ∂αSκ = −Sκ∂αuκ, (4.4)

uκ∂α�κ = −�κ∂αuκ, (4.5)

∂α = −uαuκ∂κ + Π κ
α ∂κ, (4.6)

∂κV κ = −uκuλ∂λV κ + Πκλ∂κVλ, (4.7)

∂αVβ − ∂βVα = εαβγδu
γvortδ(V ) + uαuκ∂βVκ − uβuκ∂αVκ

+ uβuκ∂κVα − uαuκ∂κVβ , (4.8)

ΠαβΠγδ(∂αVγ − ∂γVα)(∂βVδ − ∂δVβ) = 2Παβvortα(V )vortβ(V ). (4.9)

Moreover, if uκVκ = 0, then

∂αVβ − ∂βVα = εαβγδu
γvortδ(V ) − uαVκ∂βuκ + uβVκ∂αuκ

+ uβuκ∂κVα − uαuκ∂κVβ . (4.10)

In addition, the following identity holds, where the indices for ε on
LHS (4.11) are raised before Lie differentiation:

Lu(εαβγδ) = (−∂κuκ)εαβγδ. (4.11)

Furthermore, the following identities hold:

Lu(u�)α = uκ∂κuα = −∂αh − uαuκ∂κh + qSα, (4.12)
Lud(Hu�) = dLu(Hu�), (4.13)

[Lud(Hu�)]αβ = θ;h(∂αh)∂βs − θ;h(∂αs)∂βh, (4.14)

∂α(Huβ) − ∂β(Huα) = εαβγδu
γ�δ + θ {Sαuβ − Sβuα} , (4.15)

εαβγδ∂γ(Huδ) = �αuβ − uα�β + θεαβγδSγuδ, (4.16)

∂αuβ − ∂βuα =
1
H

εαβγδu
γ�δ − (∂αh)uβ + (∂βh)uα

+q {Sαuβ − Sβuα} , (4.17)
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(uκ∂κuλ)Sλ = −Sκ∂κh + qSκSκ, (4.18)

(uκ∂κSλ)uλ = Sκ∂κh − qSκSκ, (4.19)

Sκ∂αuκ = Sκ∂κuα + (Sκ∂κh)uα − qSκSκuα +
1
H

εακγδS
κuγ�δ

= Sκ∂κuα − (Sκuλ∂λuκ)uα +
1
H

εαβγδS
βuγ�δ, (4.20)

�κ∂κuα = �κ∂αuκ − (�κ∂κh)uα + q�κSκuα, (4.21)

εαβγδ∂γuδ =
1
H

�αuβ − 1
H

uα�β − εαβγδ(∂γh)uδ + qεαβγδSγuδ, (4.22)

εαβγδuβ∂γuδ = − 1
H

�α, (4.23)

∂γ�δ − ∂δ�γ = εγδκλuκvortλ(�) − (uκ∂κ�δ)uγ + uκ(∂δ�κ)uγ

+(uκ∂κ�γ)uδ − uκ(∂γ�κ)uδ, (4.24)

εαβγδ∂γ�δ = vortα(�)uβ − uαvortβ(�) + εαβγδ(uκ∂κ�γ)uδ

− εαβγδuκ(∂γ�κ)uδ.
(4.25)

Proof. (4.1) follows from definition (2.8) and the symmetry property ∂α∂βs =
∂β∂αs. Equation (4.2) is a simple consequence of definition (2.2). Equation (4.3)
follows from differentiating (2.20) with ∂α. Equation (4.4) follows from differ-
entiating (2.21) with ∂α. Equation (4.5) follows from differentiating (4.2) with
∂α. Equation (4.6) follows directly from definition (2.12). Equation (4.7) then
follows from (4.6).

To prove (4.8), we first use definition (2.4) to express the first product
on RHS (4.8) as follows:

εαβγδu
γvortδ(V ) = −εαβγδε

δθκλuγuθ∂κVλ. (4.26)

Next, we observe the following identity for the first two factors on RHS (4.26):

−εαβγδε
δθκλ = εαβγδε

θκλδ

= δθ
αδκ

γδλ
β − δθ

αδλ
γδκ

β + δλ
αδθ

γδκ
β − δλ

αδκ
γδθ

β + δκ
αδλ

γδθ
β − δκ

αδθ
γδλ

β .
(4.27)

Using (4.27) to substitute on RHS (4.26), we deduce, in view of (2.20), the
following identity:

−εαβγδε
δθκλuθ∂κVλuγ = uαuκ∂κVβ − uαuκ∂βVκ − ∂βVα

− uβuκ∂κVα + uβuκ∂αVκ + ∂αVβ . (4.28)

Combining (4.26) and (4.28) and rearranging the terms, we arrive at the de-
sired identity (4.8). Equation (4.10) then follows from (4.8) and the relation
uκ∂αVκ = −Vκ∂αuκ, which follows from differentiating the assumed identity
uκVκ = 0 with ∂α.
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To prove (4.9), we first use (4.8) to deduce

ΠαβΠγδ(∂αVγ − ∂γVα)(∂βVδ − ∂δVβ)

= ΠαβΠγδεαγκλεβδμνuκvortλ(V )uμvortν(V ). (4.29)

Next, we note the following identity, which follows easily from definition (2.12):

ΠαβΠγδεαγκλεβδμνuκvortλ(V )uμvortν(V )

= (η−1)αβ(η−1)γδεαγκλεβδμνuκvortλ(V )uμvortν(V )

= εαβκλεαβμνuκvortλ(V )uμvortν(V ). (4.30)

From (4.30), the identity εαβκλεαβμν = 2δλ
μδκ

ν − 2δκ
μδλ

ν , (2.20), and the simple
identity uαvortα(V ) = 0 [which follows easily from definition (2.4)], we find
that RHS (4.30) = 2vortα(V )vortα(V ). Again using that uαvortα(V ) = 0, we
conclude, in view of definition (2.12), the desired identity (4.9). Equation (4.11)
is a standard geometric identity, as is (4.13).

To prove (4.12), we first note the Lie differentiation identity Lu(u�)α =
uκ∂κuα + uκ∂αuκ, which follows from (2.1). Equation (4.12) follows from this
identity, (2.22), and (4.3).

To prove (4.14), we first use (2.23) and the Lie derivative formula (2.1) to
deduce that Lu(Hu�)α = uκ∂κ(Huα)+Huκ∂αuκ = −∂αH +θ∂αs+Huκ∂αuκ.
From (4.3), we see that the last product on the RHS of this identity vanishes.
Hence, taking the exterior derivative of the identity, we obtain [dLu(Hu�)]αβ =
θ;h(∂αh)∂βs − θ;h(∂αs)∂βh. The desired identity (4.14) now follows from this
identity and (4.13).

To prove (4.15), we first use definition (2.5) to compute that

εαβγδu
γ�δ = −εαβγδε

δκθλuγuκ∂θ(Huλ).

Using the identity εαβγδε
δκθλ = −εαβγδε

λκθδ = δλ
αδκ

βδθ
γ − δλ

αδθ
βδκ

γ + δκ
αδθ

βδλ
γ −

δκ
αδλ

βδθ
γ + δθ

αδλ
βδκ

γ − δθ
αδκ

βδλ
γ , we deduce, in view of (2.20), that

−εαβγδε
δκθλuγuκ∂θ(Huλ) = ∂α(Huβ) − ∂β(Huα)

− uβuκ∂κ(Huα) − uαuκ∂β(Huκ)

+ uαuκ∂κ(Huβ) + uβuκ∂α(Huκ). (4.31)

Using (2.20), (2.23), and (4.3), we compute that the last four products on
RHS (4.31) sum to θ(uαSβ − uβSα), which yields the desired identity (4.15).

To prove (4.16), we first contract 1
2εαβγδ against (4.15) to obtain the

identity

εαβγδ∂γ(Huδ) =
1
2
εαβγδεγδκλuκ�λ + θεαβγδSγuδ. (4.32)

(4.16) now follows from using the identity 1
2εαβγδεγδκλ = δβ

κδα
λ − δα

κδ
β
λ to

substitute for the factor 1
2εαβγδεγδκλ on RHS (4.32). Equation (4.17) follows

from (4.15) and simple computations.
To prove (4.18), we contract Sα against Eq. (2.22) and use Eq. (2.21).

Equation (4.19) then follows from (4.4) and (4.18).
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To prove the first equality in (4.20), we contract Sβ against (4.17) and
use Eq. (2.21). To obtain the second equality in (4.20), we use the first equality
and the identity (4.18). Equation (4.21) follows from contracting (4.17) against
�α and using (4.2).

To prove (4.22), we first use (4.17) to deduce that

εαβγδ∂γuδ =
1
2

1
H

εαβγδεγδκλuκ�λ − εαβγδ(∂γh)uδ + qεαβγδSγuδ. (4.33)

(4.22) now follows from using the identity 1
2εαβγδεγδκλ = δβ

κδα
λ − δα

κδ
β
λ to

substitute for the product 1
2εαβγδεγδκλ on RHS (4.33).

To prove (4.23), we contract (4.22) against uβ and use (2.20) and (4.2).
To prove (4.24), we first use definition (2.4) to express the first product

on RHS (4.24) as follows:

εγδκλuκvortλ(�) = −εγδκλελθαβuκuθ∂α�β . (4.34)

Next, we use the identity −εγδκλελθαβ = εγδκλεθαβλ = δθ
γδ

β
δ δα

κ − δθ
γδα

δ δβ
κ +

δα
γ δθ

δδ
β
κ − δα

γ δ
β
δ δθ

κ + δβ
γδα

δ δθ
κ − δβ

γδθ
δδ

α
κ to substitute on RHS (4.34), thereby

obtaining, in view of (2.20), the following identity:

εγδκλuκvortλ(�) = uγuκ∂κ�δ − uγuκ∂δ�κ + uδu
κ∂γ�κ + ∂γ�δ

− ∂δ�γ − uδu
κ∂κ�γ . (4.35)

Finally, we note that it is straightforward to see that (4.35) is equivalent to
the desired identity (4.24).

To prove (4.25), we first contract (4.24) against 1
2εαβγδ to deduce

εαβγδ∂γ�δ =
1
2
εαβγδεγδκλuκvortλ(�) + εαβγδ(uκ∂κ�γ)uδ

− εαβγδuκ(∂γ�κ)uδ. (4.36)

Using the identity 1
2εαβγδεγδκλ = 1

2εγδαβεγδκλ = δβ
κδα

λ −δα
κδ

β
λ to substitute in

the first product on RHS (4.36), we arrive at the desired identity (4.25). �

5. Wave Equations

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive the covariant wave equations (3.1), (3.3), and (5.18).

5.1. Covariant Wave Operator

We start by establishing a formula for the covariant wave operator of the
acoustical metric acting on a scalar function.

Lemma 5.1 (Covariant wave operator of g). Assume that (h, s, uα) is a C2

solution to (2.17)–(2.19) + (2.20). Then the covariant wave operator of the
acoustical metric g = g(h, s, u) (see Definition 2.6) acts on scalar functions φ
as follows, where RHS (5.1) is expressed relative to the rectangular coordinates:



Relativistic Euler

�gφ = (c2 − 1)uκ∂κ(uλ∂λφ) + c2((η−1)κλ∂κ∂λφ)

+ (c2 − 1)(∂κuκ)(uλ∂λφ) + 2c−1c;h(uκ∂κh)(uλ∂λφ)

− c−1c;h(g−1)κλ(∂κh)(∂λφ)

− cc;s(Sκ∂κφ). (5.1)

Proof. It is a standard fact that relative to arbitrary coordinates (and in par-
ticular relative to the rectangular coordinates), we have

�gφ =
1

√|detg|∂κ

(√
|detg|(g−1)κλ∂λφ

)
.

Using this formula and (2.14a)–(2.14b), we compute that

�gφ = c3∂κ

{−(c−3 − c−1)uκ(uλ∂λφ) + c−1((η−1)κλ∂λφ)
}

= −(1 − c2)uκ∂κ(uλ∂λφ) − (1 − c2)(∂κuκ)(uλ∂λφ)

+ (3c−1 − c)(uκ∂κc)(uλ∂λφ) − c(η−1)κλ(∂κc)(∂λφ)

+ c2((η−1)κλ∂κ∂λφ). (5.2)

The desired identity (5.1) now follows from (5.2), (2.13b), the evolution equa-
tion (2.19), and straightforward computations. �

5.2. Covariant Wave Equation for the Logarithmic Enthalpy

We now derive the covariant wave equation (3.1).

Proposition 5.2 (Covariant wave equation for the logarithmic enthalpy). As-
sume that (h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20). Then the log-
arithmic enthalpy h verifies the following covariant wave equation:

�gh = nc2qD − c−1c;h(g−1)κλ(∂κh)(∂λh)

+ c2
{
(∂κuκ)(∂λuλ) − (∂κuλ)(∂λuκ)

}

+ (1 − c2)q(Sκ∂κh) − cc;s(Sκ∂κh) + c2q;h(Sκ∂κh) + c2q;sSκSκ. (5.3)

Proof. From (5.1) with φ := h, we deduce

�gh = (c2 − 1)uκ∂κ(uλ∂λh) + c2((η−1)κλ∂κ∂λh)

+ (c2 − 1)(∂κuκ)(uλ∂λh) + 2c−1c;h(uκ∂κh)(uλ∂λh)

− c−1c;h(g−1)κλ(∂κh)(∂λh)

− cc;s(Sκ∂κh). (5.4)

Next, we differentiate Eq. (2.22) with ∂β , contract against (η−1)αβ , and
multiply by c2 to obtain the identity

c2((η−1)κλ∂κ∂λh) = −c2(uκ∂κ∂λuλ) − c2(∂κuλ)(∂λuκ)

− c2uκ∂κ(uλ∂λh) − c2(∂κuκ)(uλ∂λh)

+ c2q(∂κSκ) + c2q;h(Sκ∂κh) + c2q;sS
κSκ. (5.5)
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Next, we use (2.17) and the evolution equation (2.19) to rewrite the first
product on RHS (5.5) as follows:

−c2(uκ∂κ∂λuλ) = c2uκ∂κ(c−2uλ∂λh)

= uκ∂κ(uλ∂λh) − 2c−1c;h(uκ∂κh)(uλ∂λh). (5.6)

Using (5.6) to substitute for the first product on RHS (5.5) and then
using the resulting identity to substitute for the product c2(η−1)κλ∂κ∂λh on
RHS (5.4), we deduce

�gh = −c2(∂κuλ)(∂λuκ) − (∂κuκ)(uλ∂λh)

− c−1c;h(g−1)κλ(∂κh)(∂λh)

− cc;s(Sκ∂κh) + c2q(∂κSκ) + c2q;h(Sκ∂κh) + c2q;sS
κSκ. (5.7)

Finally, we use Eq. (2.17) to substitute for the factor uλ∂λh in the second
product on RHS (5.7), and we use definition (2.16b) to express the product
c2q(∂κSκ) on RHS (5.7) as nc2qD + (1 − c2)q(Sκ∂κh), which in total yields
the desired Eq. (5.3). �

5.3. Covariant Wave Equation for the Rectangular Components of the Four-
Velocity

We now derive the covariant wave equation (3.3).

Proposition 5.3 (Covariant wave equation for the rectangular four-velocity
components). Assume that (h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20).
Then the rectangular velocity components uα verify the following covariant
wave equations:

�gu
α = − c2

H
Cα

− c2

H
εαβγδ(∂βuγ)�δ +

(1 − c2)
H

εαβγδuβ(∂γh)�δ

+
(1 − c2)q

H
εαβγδSβuγ�δ

− (g−1)κλ(∂κh)(∂λuα) − c−1c;h(g−1)κλ(∂κh)(∂λuα)

+ (η−1)αλ {(∂κuκ)(∂λh) − (∂λuκ)(∂κh)}
+ c2uα

{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}

− cc;s(Sκ∂κuα) + q(Sκ∂κuα)

+ (c2 − 1)quα(Sκuλ∂λuκ) + c2qSκ((η−1)αλ∂λuκ)

+ 2c−1c;sS
α(uκ∂κh) + 2c−1c;hqSα(uκ∂κh)

− q;hSα(uκ∂κh) − qSα(∂κuκ)

+ (θ − θ;h)
c2

H
Sα(∂κuκ) + (θ − θ;h)

c2

H
uα(Sκ∂κh)

+ (θ;h − θ)
c2

H
Sκ((η−1)αλ∂λuκ). (5.8)
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Proof. From (5.1) with φ := uα, we deduce

�guα = (c2 − 1)uκ∂κ(uλ∂λuα) + c2((η−1)κλ∂κ∂λuα)

+ (c2 − 1)(∂κuκ)(uλ∂λuα) + 2c−1c;h(uκ∂κh)(uλ∂λuα)

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα). (5.9)

Next, we use Eqs. (2.19), (2.22), and the second line of (6.1) [where below,
we derive (6.1) using an independent argument] to rewrite the first product on
RHS (5.9) as follows:

(c2 − 1)uκ∂κ(uλ∂λuα) = (1 − c2)(uκ∂κ∂αh) + (1 − c2)
{
uκ∂κ(uλ∂λh)

}
uα

+ (1 − c2)(uκ∂κuα)(uλ∂λh) + (c2 − 1)uκ∂κ(qSα)

= (1 − c2)(uκ∂κ∂αh) + (1 − c2)
{
uκ∂κ(uλ∂λh)

}
uα

+ (1 − c2)(uκ∂κuα)(uλ∂λh) + (c2 − 1)q;h(uκ∂κh)Sα

+ (1 − c2)q(Sκ∂κuα) +
1
H

(1 − c2)qεαβγδS
βuγ�δ

+ (c2 − 1)qSκ(uλ∂λuκ)uα. (5.10)

Next, we use definition (2.16b), the identity (4.17), and the evolution
equations (2.17), (2.19), and (2.24) to rewrite the second product on RHS (5.9)
as follows:

c2((η−1)κλ∂κ∂λuα) = c2(∂α∂κuκ)

+ c2(η−1)κλ∂κ

{ 1
H

ελαγδu
γ�δ − (∂λh)uα + (∂αh)uλ+

qSλuα − qSαuλ

}

= (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)

+ 2c−1c;h(∂αh)(uκ∂κh) + 2c−1c;sSα(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

− c2((η−1)κλ∂κ∂λh)uα − c2(η−1)κλ(∂κh)(∂λuα)

+ c2(∂αh)(∂κuκ)

+ c2q;h(Sκ∂κh)uα + c2q;sSκSκuα

+ c2q(∂κSκ)uα + c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα − c2q(uκ∂κSα) − c2q(∂κuκ)Sα

= nc2qDuα

+ (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)
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+ 2c−1c;h(∂αh)(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

− c2((η−1)κλ∂κ∂λh)uα − c2(η−1)κλ(∂κh)(∂λuα)

+ c2(∂αh)(∂κuκ)

+ c2q;h(Sκ∂κh)uα + c2q;sSκSκuα + c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ − c2q(∂κuκ)Sα

+ (1 − c2)q(Sκ∂κh)uα + 2c−1c;s(uκ∂κh)Sα. (5.11)

Next, we use the identity (5.1) with φ := h to substitute for the term
�gh on LHS (5.3), which yields the identity

c2((η−1)κλ∂κ∂λh) = c2
{
(∂κuκ)(∂λuλ) − (∂λuκ)(∂κuλ)

}

+ (1 − c2)uκ∂κ(uλ∂λh) + (1 − c2)(∂κuκ)(uλ∂λh)

− 2c−1c;h(uκ∂κh)(uλ∂λh)

+ nc2qD
+ (1 − c2)q(Sκ∂κh) + c2q;h(Sκ∂κh) + c2q;sSκSκ. (5.12)

From (5.12), it follows that the product −c2((η−1)κλ∂κ∂λh)uα on
RHS (5.11) can be expressed as

−c2((η−1)κλ∂κ∂λh)uα = c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

+ (c2 − 1)
{
uκ∂κ(uλ∂λh)

}
uα

+ (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λh)uα

− nc2qDuα

+ (c2 − 1)q(Sκ∂κh)uα − c2q;h(Sκ∂κh)uα

− c2q;sSκSκuα. (5.13)

Using (5.13) to substitute for the term −c2((η−1)κλ∂κ∂λh)uα on
RHS (5.11), we obtain the identity

c2((η−1)κλ∂κ∂λuα) = (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)

+ 2c−1c;h(∂αh)(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ
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+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

+ (c2 − 1)
{
uκ∂κ(uλ∂λh)

}
uα

+ (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λh)uα

− c2(η−1)κλ(∂κh)(∂λuα) + c2(∂αh)(∂κuκ)

+ c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ − c2q(∂κuκ)Sα

+ 2c−1c;s(uκ∂κh)Sα. (5.14)

Using (5.10) and (5.14) to substitute for the first and second products on
RHS (5.9), and reorganizing the terms, we deduce [where we have added and
subtracted (∂κuκ)(∂αh) on the third and fourth lines of RHS (5.15)]

�guα = c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

+ (1 − c2)(uκ∂κuα)(uλ∂λh) − c2(η−1)κλ(∂κh)(∂λuα)

+ {(∂κuκ)(∂αh) − (∂αuκ)(∂κh)}
+ (c2 − 1)(∂κuκ)(∂αh) + (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ (c2 − 1)(∂κuκ)(uλ∂λuα)

+ 2c−1c;h(∂αh)(uκ∂κh) + 2c−1c;h(uκ∂κh)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λuα)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ + c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα)

+ 2c−1c;s(uκ∂κh)Sα − q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ

− c2q(∂κuκ)Sα + q(Sκ∂κuα)

+
1
H

(1 − c2)qεαβγδS
βuγ�δ + (c2 − 1)q(Sκuλ∂λuκ)uα. (5.15)

Next, using (2.13b), we observe the following identity for the two terms
on the second line of RHS (5.15):

(1 − c2)(uκ∂κuα)(uλ∂λh) − c2(η−1)κλ(∂κh)(∂λuα)

= −(g−1)κλ(∂κh)(∂λuα). (5.16)

Moreover, using Eq. (2.22), we see that the terms on the fourth through sev-
enth lines of RHS (5.15) sum to (c2 − 1)q(∂κuκ)Sα + 2c−1c;hq(uκ∂κh)Sα. In
addition, appealing to definition (2.4) with Vα := �α, we obtain the following
identity for the first product on RHS (5.15): c2 1

H ελαγδu
γ((η−1)κλ∂κ�δ) =
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−c2 1
H vortα(�). From these facts, (5.15), and (5.16), we obtain the following

equation:

�guα = −c2 1
H

vortα(�)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ + c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ {(∂κuκ)(∂αh) − (∂αuκ)(∂κh)} − (g−1)κλ(∂κh)(∂λuα)

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα)

+ 2c−1c;s(uκ∂κh)Sα − q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ

+ q(Sκ∂κuα) +
1
H

(1 − c2)qεαβγδS
βuγ�δ

+ (c2 − 1)q(Sκuλ∂λuκ)uα

− q(∂κuκ)Sα + 2c−1c;hq(uκ∂κh)Sα. (5.17)

Using definition (2.16a) to express the product −c2 1
H vortα(�) on RHS (5.17)

as −c2 1
H Cα + · · · , reorganizing the terms on the RHS of the resulting identity,

and raising the α index with η−1, we arrive at the desired identity (5.8). �

5.4. Covariant Wave Equation for the Entropy

In this subsection, we derive the covariant wave equation (3.5).

Proposition 5.4 (Covariant wave equation for s). Assume that (h, s, uα) is a
C2 solution to (2.17)–(2.19) + (2.20). Then the entropy s verifies the following
covariant wave equation:

�gs = c2nD + Sκ∂κh − c2Sκ∂κh − cc;hSκ∂κh − cc;sSκSκ. (5.18)

Proof. Applying (5.1) with φ := s, using (2.13b) to algebraically substitute for
the factor of (g−1)κλ on RHS (5.1), and using the evolution equation (2.19)
[which implies that many factors on RHS (5.1) vanish], we deduce, in view of
definition (2.8), that

�gs = c2∂κSκ − cc;hSκ∂κh − cc;sSκSκ. (5.19)

We then solve for ∂κSκ in terms of the remaining terms in definition (2.16b)
and then use the resulting identity to algebraically substitute for the factor
∂κSκ in the first product on RHS (5.19), which in total yields the desired
Eq. (5.18). �

6. Transport Equations for the Entropy Gradient and the
Modified Divergence of the Entropy

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive Eqs. (3.7) and (3.9a). We start by deriving (3.7) (more precisely, its
η-dual).
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Proposition 6.1 (Transport equation for the entropy gradient). Assume that
(h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20). Then the rectangular
components the Sα of the entropy gradient vectorfield (see Definition 2.5) verify
the following transport equations:

uκ∂κSα = −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ − (Sκ∂κh)uα + qSκSκuα

= −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ + Sκ(uλ∂λuκ)uα. (6.1)

Proof. From Eq. (2.24), the identity (4.17), (2.20), and (2.21), we deduce

uκ∂κSα = −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ + (∂αh)Sκuκ − (Sκ∂κh)uα

− q {SαSκuκ − SκSκuα}
= −Sκ∂κuα − 1

H
εαβγδS

βuγ�δ − (Sκ∂κh)uα + qSκSκuα, (6.2)

which yields the first line of (6.1). To obtain the second line of (6.1) from the
first, we use the identity (4.18). �

We now derive Eq. (3.9a).

Proposition 6.2 (Transport equation for the modified divergence of the en-
tropy). Assume that (h, s, uα) is a C3 solution to (2.17)–(2.19) + (2.20). Then
the modified divergence of the entropy gradient D, which is defined in (2.16b),
verifies the following transport equation:

uκ∂κD =
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2uκ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+
1
n

c−2Sκ
{
(∂κuλ)(∂λh) − (∂λuλ)(∂κh)

}

+
SκCκ

nH

+
(1 − c−2)

nH
εαβγδSαuβ(∂γh)�δ +

1
nH

εαβγδSα(∂βuγ)�δ

+
(θ − θ;h)

nH
Sκ(Sλ∂λuκ) − 2q

n
Sκ(Sλ∂λuκ)

+
(θ;h − θ)

nH
SκSκ(∂λuλ) +

2c−1c;s

n
SκSκ(∂λuλ)

− c2q;h

n
SκSκ(∂λuλ) +

q

n
SκSκ(∂λuλ). (6.3)

Proof. We apply (η−1)αλ∂λ to Eq. (6.1) [where we use the first equality in (6.1)]
and use the evolution equation (2.19) and the identity (4.18) to deduce

uκ∂κ∂λSλ = −uκ∂κ(Sλ∂λh) − 2(∂λSκ)(∂κuλ)

− Sκ∂κ∂λuλ − (Sκ∂κh)(∂λuλ)
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+
1
H

εαβγδ(∂αh)Sβuγ�δ − 1
H

εαβγδSβuγ(∂α�δ)

− 1
H

εαβγδSβ(∂αuγ)�δ

+ q;hSκSκ(uλ∂λh) + 2qSκ(uλ∂λSκ) + qSκSκ(∂λuλ). (6.4)

Next, we use the evolution equations (2.17) and (2.19) to rewrite the third
product on RHS (6.4) as follows:

−Sκ∂κ∂λuλ = Sκ∂κ(c−2uλ∂λh)

= c−2(Sκuλ∂λ∂κh) − 2c−3c;h(Sκ∂κh)(uλ∂λh)

− 2c−3c;sSκSκ(uλ∂λh) + c−2(Sκ∂κuλ)(∂λh)

= uκ∂κ(c−2Sλ∂λh) + c−2(Sκ∂κuλ)(∂λh) − c−2(uκ∂κSλ)(∂λh)

− 2c−3c;sSκSκ(uλ∂λh). (6.5)

Next, with the help of the evolution equation (2.17), we decompose the second
and third products on RHS (6.5) as follows:

c−2(Sκ∂κuλ)(∂λh) = c−2(Sκ∂κh)(∂λuλ)

+ c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}
, (6.6)

−c−2(uκ∂κSλ)(∂λh) = −c−2(uκ∂κh)(∂λSλ)

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}

= (∂κuκ)(∂λSλ)

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}
. (6.7)

Using (6.6)–(6.7) to substitute for the second and third products on RHS (6.5)
and then using the resulting identity to substitute for the third product on
RHS (6.4), we obtain the following equation:

uκ∂κ

{
∂λSλ + Sλ∂λh − c−2(Sλ∂λh)

}

= (∂κSκ)(∂λuλ) − 2(∂λSκ)(∂κuλ)

− (Sκ∂κh)(∂λuλ) + c−2(Sκ∂κh)(∂λuλ)

+ c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}

+
1
H

εαβγδ(∂αh)Sβuγ�δ − 1
H

εαβγδSβuγ(∂α�δ) − 1
H

εαβγδSβ(∂αuγ)�δ

+ q;hSκSκ(uλ∂λh) + 2qSκ(uλ∂λSκ) + qSκSκ(∂λuλ)

− 2c−3c;sSκSκ(uλ∂λh). (6.8)

We now multiply both sides of (6.8) by 1/n, commute the factor of 1/n under
the operator uκ∂κ on LHS (6.8), use Eq. (2.25) (which in particular implies
that uκ∂κ(1/n) = (1/n)∂κuκ), and use Eq. (2.17) to replace the two factors of
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uλ∂λh on the last and next-to-last lines of RHS (6.8) with −c2∂λuλ, thereby
obtaining the following equation:

uκ∂κ

{
1
n

(∂λSλ) +
1
n

(Sλ∂λh) − 1
n

c−2(Sλ∂λh)
}

=
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}

+
1
n

c−2
{
(uκ∂κh)(∂λSλ) − (∂λh)(uκ∂κSλ)

}

+
1

nH
εαβγδ(∂αh)Sβuγ�δ − 1

nH
εαβγδSβuγ(∂α�δ)

− 1
nH

εαβγδSβ(∂αuγ)�δ

+
2q

n
Sκ(uλ∂λSκ) +

2c−1c;s

n
SκSκ(∂λuλ) − c2q;h

n
SκSκ(∂λuλ)

+
q

n
SκSκ(∂λuλ). (6.9)

Next, we use definitions (2.4) and (2.16a) and the identity (2.21) to obtain the
following identity for the second product on the fourth line of RHS (6.9):

− 1
nH

εαβγδSβuγ(∂α�δ) = − 1
nH

εαβγδSαuβ(∂γ�δ)

=
CκSκ

nH
− 1

nH
c−2εαβγδSαuβ(∂γh)�δ

+
(θ;h − θ)

nH
SκSκ(∂λuλ) +

(θ − θ;h)
nH

Sκ(Sλ∂λuκ).

(6.10)

Using (6.10) to substitute for the second product on the fourth line of RHS (6.9),
using (2.24) to express the first product on the next-to-last line of RHS (6.9) as
2q
n Sκ(uλ∂λSκ) = − 2q

n Sκ(Sλ∂λuκ), and noting that the terms in parentheses
on LHS (6.9) are equal to D [see (2.16b)], we arrive at the desired evolution
equation (6.3). �

7. Transport Equation for the Vorticity

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive Eq. (3.8). We also derive some preliminary identities that, in the next
section, we will use when deriving Eq. (3.11b). We collect all of these results
in the following proposition.

Proposition 7.1 (Transport equation for the vorticity). Assume that (h, s, uα)
is a C3 solution to (2.17)–(2.19) + (2.20). Then the rectangular components
�α of the vorticity vectorfield defined in (2.5) verify the following transport
equations:
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uκ∂κ�α = �κ∂κuα − (∂κuκ)�α − (�κ∂κh)uα

+ (θ − θ;h)εαβγδuβ(∂γh)Sδ + q�κSκuα. (7.1)

Moreover, the following identity holds:

(Lu��)α = �κ∂κuα + �κ(∂αuκ) − (∂κuκ)�α + (uκ∂κuλ)uα�λ

+ (θ − θ;h)ε βγδ
α uβ(∂γh)Sδ. (7.2)

In addition, the following identity holds:

(dLu��)αβ

= (∂α�κ)(∂κuβ) − (∂β�κ)(∂κuα)

+ �κ∂κ∂αuβ − �κ∂κ∂βuα

+ (∂α�κ)(∂βuκ) − (∂β�κ)(∂αuκ)

− (∂α∂κuκ)�β + (∂β∂κuκ)�α

− (∂κuκ)(∂α�β) + (∂κuκ)(∂β�α)

+ (∂αuβ)�λ(uκ∂κuλ) − (∂βuα)�λ(uκ∂κuλ)

+ uβ(∂α�λ)(uκ∂κuλ) − uα(∂β�λ)(uκ∂κuλ)

+ uβ�λ(∂αuκ)(∂κuλ) − uα�λ(∂βuκ)(∂κuλ)

+ uβ�λ(uκ∂κ∂αuλ) − uα�λ(uκ∂κ∂βuλ)

+ (θh − θ;h;h)ε γδ
βκ uκ(∂αh)(∂γh)Sδ

+ (θ;h;h − θh)ε γδ
ακ uκ(∂βh)(∂γh)Sδ

+ (θ;s − θ;h;s)ε
γδ

βκ uκSα(∂γh)Sδ + (θ;h;s − θ;s)ε γδ
ακ uκSβ(∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ (∂αuκ)(∂γh)Sδ + (θ;h − θ)ε γδ

ακ (∂βuκ)(∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ uκ(∂α∂γh)Sδ + (θ;h − θ)ε γδ

ακ uκ(∂β∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ uκ(∂γh)(∂αSδ) + (θ;h − θ)ε γδ

ακ uκ(∂γh)(∂βSδ). (7.3)

Finally, the rectangular components vortα(�) of the vorticity of the vor-
ticity, which is defined by (2.4) and (2.5), verify the following transport equa-
tions:

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδuβ(∂γ∂κuκ)�δ − εαβγδuβ(�κ∂κ∂γuδ)

+ εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ + εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γ�κ)(∂κuδ)

+ εαβγδuβ(∂κuκ)(∂γ�δ)

− εαβγδuβ(∂γuδ)�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)
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+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh) + (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ (θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

+ (θ;h − θ)uα(Sκuλ∂κ∂λh) + (θ;h − θ)(η−1)αλ(Sκ∂κ∂λh)

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα) + (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ∂κh)uβ(∂λSβ). (7.4)

Remark 7.2 Note that RHS (7.4) features some terms that explicitly depend
on two derivatives of u, falsely suggesting that there is derivative loss, that is,
that vortα(�) cannot be more regular than ∂2u. For this reason, Eq. (7.4) is not
suitable for obtaining top-order energy estimates for vortα(�). To overcome
this difficulty, we will derive a transport-div-curl system for � that does not
lose derivatives; see Proposition 8.2.

Proof of Proposition 7.1. We first prove (7.1). From definition (2.5) and the
Lie differentiation formula (2.1), we deduce that

uκ∂κ�α − �κ∂κuα = Lu�α = −1
2
Lu

{
εαβγδuβ(d(Hu�))γδ

}
. (7.5)

Using (7.5), the Leibniz rule for Lie derivatives, definition (2.5), (4.11), the
first identity in (4.12), (4.14), and (4.16), we compute that

uκ∂κ�α = �κ∂κuα − (∂κuκ)�α + (uκ∂κuλ)uα�λ − (uκ∂κuλ)uλ�α

− θεαβγδ(uκ∂κuβ)Sγuδ − θ;hεαβγδuβ(∂γh)Sδ. (7.6)

Using (4.3), we see that the fourth product on RHS (7.6) vanishes. Next, we
use (2.22) and (4.2) to obtain the following identity for the third product on
RHS (7.6): (uκ∂κuλ)uα�λ = −(�κ∂κh)uα + q�κSκuα. Next, we use (2.22) to
obtain the following identity for the fifth product on RHS (7.6):
−θεαβγδ(uκ∂κuβ)Sγuδ = θεαβγδ(∂βh)Sγuδ = θεαβγδuβ(∂γh)Sδ. Substituting
these two identities for the third and fifth products on RHS (7.6), we arrive
at the desired identity (7.1).

Equation (7.2) follows from the Lie derivative identity

(Lu��)α = uκ∂κ�α + �κ∂αuκ

[see (2.1)], from using (4.3) to observe the vanishing of the fourth product
on RHS (7.6), and from using the identity for the fifth product on RHS (7.6)
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proved in the previous paragraph. Equation (7.3) then follows from taking the
exterior derivative of Eq. (7.2) and carrying out straightforward computations.

To derive (7.4), we first use definition (2.4) to deduce

Luvortα(�) = −1
2
Lu(εαβγδuβ(d��)γδ). (7.7)

Next, we use (7.7), the Leibniz rule for Lie derivatives, (4.11), the first equality
in (4.12), and the standard commutation identity Lud�� = dLu�� to deduce

Luvortα(�) = −(∂κuκ)vortα(�) − 1
2
εαβγδ(uκ∂κuβ)(d��)γδ

− 1
2
εαβγδuβ(dLu��)γδ. (7.8)

Next, using (4.25), we express the second product on RHS (7.8) as follows:

−1
2
εαβγδ(uκ∂κuβ)(d��)γδ = −vortα(�)(uκ∂κuβ)uβ

+ uα(uκ∂κuβ)vortβ(�)

− εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ

+ εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ. (7.9)

Next, using (4.3), we observe that the first product on RHS (7.9) vanishes.
From this fact, the Lie derivative identity Luvortα(�) = uκ∂κvortα(�) −
vortκ(�)∂κuα [see (2.1)], (7.8), and (7.9), we deduce

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ

− εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ

− 1
2
εαβγδuβ(dLu��)γδ. (7.10)

Next, we use (4.5) and the antisymmetry of ε··· to express the product
on the third line of RHS (7.10) as

εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ = εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ ,

use the antisymmetry of ε··· to express the product on the fourth line of
RHS (7.10)

−εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ = εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ ,

use (7.3) to substitute for the factor (dLu��)γδ in the last product on
RHS (7.10), and carry out straightforward computations, thereby deducing
that

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδuβ(∂γ∂κuκ)�δ − εαβγδuβ(�κ∂κ∂γuδ)
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+ εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ

+ εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γ�κ)(∂κuδ)

+ εαβγδuβ(∂κuκ)(∂γ�δ)

− εαβγδuβ(∂γuδ)�λ(uκ∂κuλ)

+ (θ;h;h − θh)εαβγδε
μν

δκ uβuκ(∂γh)(∂μh)Sν

+ (θ;h;s − θ;s)εαβγδε
μν

δκ uβuκSγ(∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβ(∂γuκ)(∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβuκ(∂γ∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβuκ(∂μh)(∂γSν). (7.11)

Finally, we use the identity

εαβγδε
μν

δκ = (η−1)ναδβ
κ(η−1)μγ − (η−1)ναδγ

κ(η−1)μβ

+ (η−1)νγδα
κ(η−1)μβ − (η−1)νγδβ

κ(η−1)μα

+ (η−1)νβδγ
κ(η−1)μα − (η−1)νβδα

κ(η−1)μγ

to substitute for the five products εαβγδε
μν

δκ on RHS (7.11). Also using
(2.20), (2.21), and (4.3), we arrive at the desired identity (7.4). �

8. The Transport-div-curl System for the Vorticity

Our main goal in this section is to derive Eqs. (3.11a) and (3.11b). We ac-
complish this in Proposition 8.2. Before proving the proposition, we will first
establish some preliminary identities.

8.1. Preliminary Identities

In the next lemma, we derive a large collection of identities that we will use in
deriving the transport equation verified by the vectorfield Cα defined in (2.16a).

Lemma 8.1 (Identification of the null structure of some terms tied to the
transport-div-curl system for the vorticity). Assume that (h, s, uα) is a C2

solution to (2.17)–(2.19) + (2.20). Then the following identities hold for some
of the terms on the third through seventh lines of RHS (7.4):

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)
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+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ, (8.1a)

−εαβγδuβ(�κ∂κ∂γuδ) =
1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh)

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ), (8.1b)

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)uγ�κ(∂δuκ)

+ (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ

+ q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh), (8.1c)

εαβγδ(uκ∂κuβ)uγ�λ(∂δuλ) = −εαβγδ(∂βh)uγ�λ(∂δuλ)

+ qεαβγδSβuγ�λ(∂δuλ), (8.1d)

−εαβγδuβ(∂γ�κ)(∂κuδ) = −εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) +
1
H

�α(∂κ�κ)

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ, (8.1e)

εαβγδuβ(∂κuκ)(∂γ�δ) = −(∂κuκ)vortα(�), (8.1f)

−εαβγδuβ(∂γuδ)�λ(uκ∂κuλ) =
1
H

�α�λ(uκ∂κuλ). (8.1g)

Moreover, we have

(θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

= uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ) + (θ − θ;h)(uκ∂κSα)(∂λuλ)
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+ (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

+ (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ,

(8.2a)

(θ;h − θ)uα(Sκuλ∂κ∂λh) = uκ∂κ

{
(θ;h − θ)uα(Sλ∂λh)

}

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh), (8.2b)

(θ;h − θ)(η−1)αλ(Sκ∂κ∂λh) = uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)(η−1)αλ(∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ

+ 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.2c)

Identities that reveal null-form structure and cancellations. The fol-
lowing identities hold25:

Q2 := (θ;h − θ)((η−1)ακ∂κh)∂λSλ + (θ − θ;h)(η−1)κλ(∂κh)(∂λSα)

= (θ;h − θ)(η−1)ακ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}
, (8.3a)

Q4 := (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh) + (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

= c−2(θh − θ;h;h)Sα(g−1)κλ(∂κh)(∂λh), (8.3b)

Q5 := (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

= (θ;h;h − θh)Sβuκ(η−1)αλ {(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h;h − θh)q((η−1)ακ∂κh)SλSλ, (8.3c)

Q6 := c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ − θ;h)Sα(∂κuκ)(∂λuλ)

= c−4(θ;h − θ)Sα(g−1)κλ(∂κh)(∂λh), (8.3d)

25Our labeling of the terms Q2, Q3, etc. is tied to the order in which terms appear in our
proof of (8.41).
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Q7 := (θ;h − θ)Sα(uκ∂κh)(uλ∂λh) + (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

= (θ;h − θ)qSα(Sκ∂κh), (8.3e)

Q9 := (θ;h − θ)(Sκ∂κuα)(∂λuλ) + (θ;h − θ)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ)

= (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + q(θ;h − θ)(uκ∂κuα)SλSλ, (8.3f)

Q11 := (θ − θ;h)(uκ∂κSα)(∂λuλ) + (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

= (θ;h − θ)Sβ(η−1)ακ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}
, (8.3g)

Q12 := 2(θ;h − θ)(∂κuκ)(η−1)αλSβ(∂λuβ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ;h − θ)(η−1)ακSβ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}

+ c−2(θ;h − θ)(η−1)ακSβuλ {(∂λuβ)(∂κh) − (∂κuβ)(∂λh)}
+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh), (8.3h)

Q13 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ)

= (θ;h − θ)uαSβuλ {(∂κuκ)(∂λuβ) − (∂λuκ)(∂κuβ)}
+ q(θ − θ;h)uαSκSκ(∂λuλ), (8.3i)

Q14 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ)

= n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uαuκ

{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}
, (8.3j)

Q15 := (∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

= c−2qεαβγδSβ(∂γh)�δ, (8.3k)

Q16 := −c−2uαεσβγδ(uκ∂κuσ)uβ(∂γh)�δ

= −c−2quαεκβγδSκuβ(∂γh)�δ, (8.3l)

Q18 := (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

= q(θ − θ;h)SκSκ((η−1)αλ∂λh), (8.3m)

Q19 := (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

= q(θ;h − θ)uαSκSκ(∂λuλ), (8.3n)
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Q20 := (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα)

= 0, (8.3o)

Q21 := (θ;h − θ)uα(uκ∂κuβ)uβ(Sλ∂λh)

= 0. (8.3p)

Proof. We split the proof into many pieces.

• Proof of (8.1a): We first use Eq. (2.17) to deduce

εαβγδuβ(∂γ∂κuκ)�δ = −εαβγδuβ

{
∂γ(c−2uκ∂κh)

}
�δ

= −εαβγδuβ(c−2uκ∂κ∂γh)�δ

+ 2c−3c;h(uκ∂κh)εαβγδuβ(∂γh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ. (8.4)

Next, we rewrite the first term on RHS (8.4) as a perfect uκ∂κ derivative plus
error terms, thereby obtaining, with the help of (2.19), the following identity:

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
εαβγδc−2uβ(∂γh)�δ

}

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)(uκ∂κ�δ)

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ. (8.5)

Using Eq. (7.1) to substitute for the factor uκ∂κ�δ in the third product on
RHS (8.5), we deduce

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)(�κ∂κuδ)

− c−2(∂κuκ)εαβγδuβ(∂γh)�δ

+ c−2(θ − θ;h)εαβγδε κλ
δν uβuν(∂γh)(∂κh)Sλ

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ. (8.6)

Next, using the identity (4.21), we express the third product on RHS (8.6) as
follows:

c−2εαβγδuβ(∂γh)(�κ∂κuδ) = c−2εαβγδuβ(∂γh)�κ(∂δuκ). (8.7)
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Next, using the identity

−εαβγδε κλ
δν = (η−1)λβδα

ν (η−1)κγ − (η−1)λβδγ
ν(η−1)κα

+ (η−1)λγδβ
ν (η−1)κα − (η−1)λγδα

ν (η−1)κβ

+ (η−1)λαδγ
ν(η−1)κβ − (η−1)λαδβ

ν (η−1)κγ

and Eqs. (2.20), (2.21), and (4.2), we express the third-from-last product on
RHS (8.6) as follows:

c−2(θ − θ;h)εαβγδε κλ
δν uβuν(∂γh)(∂κh)Sλ

= c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh). (8.8)

Using (8.7) and (8.8) to substitute for the relevant products on RHS (8.6),
adding and subtracting c−2εαβγδuβ�δ(∂κuκ)(∂γh), and reorganizing the terms,
we arrive at the desired identity (8.1a).

• Proof of (8.1b): We first use (4.22) to deduce

εαβγδuβ(�κ∂κ∂γuδ)

= uβ�κ∂κ

{
1
H

�αuβ − 1
H

uα�β − εαβγδ(∂γh)uδ + qεαβγδSγuδ

}
. (8.9)

The desired identity (8.1b) now follows from (2.6), (2.20), (4.2), (4.3), (4.5),
(4.21), (8.9), and straightforward calculations.

• Proof of (8.1c): We first use Eq. (2.22) to substitute for the factor uκ∂κuβ

on LHS (8.1c), thereby obtaining the identity

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)(uλ∂λ�δ)uγ

+ qεαβγδSβ(uλ∂λ�δ)uγ . (8.10)

We then use Eq. (7.1) to substitute for the two factors of uλ∂λ�δ on RHS (8.10),
which yields the identity

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)uγ(�κ∂κuδ)

+ (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ;h − θ)εαβγδε κλ
δν (∂βh)uν(∂κh)Sλuγ

+ qεαβγδSβuγ(�κ∂κuδ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ − θ;h)εαβγδε κλ
δν uν(∂κh)SλSβuγ . (8.11)

Next, we use the identity (4.21) to express the first and fourth products on
RHS (8.11) as follows:

−εαβγδ(∂βh)(�λ∂λuδ)uγ = −εαβγδ(∂βh)�λ(∂δuλ)uγ , (8.12)
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qεαβγδSβuγ(�κ∂κuδ) = qεαβγδSβuγ�κ(∂δuκ). (8.13)

We then use the identity

εαβγδε κλ
δν = (η−1)λβδγ

ν(η−1)κα − (η−1)λβδα
ν (η−1)κγ

+ (η−1)λγδα
ν (η−1)κβ − (η−1)λγδβ

ν (η−1)κα

+ (η−1)λαδβ
ν (η−1)κγ − (η−1)λαδγ

ν(η−1)κβ

and Eqs. (2.20) and (2.21) to express the third product on RHS (8.11) as
follows:

(θ;h − θ)εαβγδε κλ
δν (∂βh)uν(∂κh)Sλuγ

= (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh). (8.14)

Similarly, we express the last product on RHS (8.11) as follows:

q(θ − θ;h)εαβγδε κλ
δν uν(∂κh)SλSβuγ = q(θ;h − θ)((η−1)κα∂κh)SλSλ

+ q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh). (8.15)

Using (8.12)–(8.13) and (8.14)–(8.15) to substitute for the relevant prod-
ucts on RHS (8.11), we arrive at the desired identity (8.1c).

• Proof of (8.1d): (8.1d) follows easily from using Eq. (2.22) to substitute for
the factor uκ∂κuβ on the LHS.

• Proof of (8.1e): We first use the identity (4.17) to deduce

εαβγδuβ(∂γ�κ)(∂κuδ) = εαβγδuβ(∂γ�κ)(∂δuκ)

+
1
H

εαβγδεκδθλuθ�λuβ(∂γ�κ)

+ εαβγδuβ(∂γ�κ)uκ(∂δh) − qεαβγδuβ(∂γ�κ)uκSδ.

(8.16)

Next, we note the identity

εαβγδεκδθλ = −εαβγδεκλθδ = δα
κδ

β
λδ

γ
θ − δβ

κδα
λδ

γ
θ

+ δβ
κδ

γ
λδα

θ − δα
κδ

γ
λδ

β
θ + δγ

κδα
λδ

β
θ − δγ

κδ
β
λδα

θ ,

which, in view of (2.20), (4.2), and (4.5), allows us to express the second
product on RHS (8.16) as follows:

1
H

εαβγδεκδθλuθ�λuβ(∂γ�κ) = − 1
H

�αuλ(uκ∂κ�λ)

+
1
H

uαuλ(�κ∂κ�λ)
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+
1
H

(�κ∂κ�α) − 1
H

�α(∂κ�κ)

=
1
H

�α�λ(uκ∂κuλ) − 1
H

uα�λ(�κ∂κuλ)

+
1
H

(�κ∂κ�α) − 1
H

�α(∂κ�κ). (8.17)

Using (8.17) to substitute for the second product on RHS (8.16), and us-
ing (4.5) to express the third product on RHS (8.16) as εαβγδuβ(∂γ�κ)uκ(∂δh)
= −εαβγδuβ�κ(∂γuκ)(∂δh) = εαβγδuβ(∂γh)�κ(∂δuκ) and the last product on
RHS (8.16) as −qεαβγδuβ(∂γ�κ)uκSδ = qεαβγδuβ(∂γuκ)�κSδ, we arrive at
the desired identity (8.1e).

• Proof of (8.1f): (8.1f) follows from definition (2.4) with Vδ := �δ.

• Proof of (8.1g): (8.1g) is a straightforward consequence of (4.22), (2.20),
and (4.2).

• Proof of (8.2a): We first use (5.5) to express LHS (8.2a) as follows:

(θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

= (θ;h − θ)Sα(uλ∂λ∂κuκ) + (θ;h − θ)Sα(∂κuλ)(∂λuκ)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh) + (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ.

(8.18)

Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.18)
as follows:

(θ;h − θ)Sα(uλ∂λ∂κuκ) = uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

+ (θ − θ;h)(uκ∂κSα)(∂λuλ). (8.19)

Using (8.19) to substitute for the first product on RHS (8.18), we arrive at the
desired identity (8.2a).

• Proof of (8.2b): (8.2b) is a straightforward consequence of Eq. (2.19).

• Proof of (8.2c): We first differentiate Eq. (4.18) with (η−1)αλ∂λ and then
multiply the resulting identity by (θ;h − θ) to obtain

(θ;h − θ)(η−1)αλ(Sκ∂κ∂λh) = (θ − θ;h)(η−1)αλSβ(uκ∂κ∂λuβ)

+ (θ − θ;h)((η−1)αλ∂λSκ)(∂κh)

+ (θ − θ;h)((η−1)αλ∂λSβ)(uκ∂κuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ

+ 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.20)
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Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.20)
as follows:

(θ − θ;h)(η−1)αλSβ(uκ∂κ∂λuβ)

= uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)(η−1)αλ(∂λuβ). (8.21)

Next, we use Eqs. (2.22) and (4.4) to express the sum of the second and third
products on RHS (8.20) as follows:

(θ − θ;h)((η−1)αλ∂λSκ)(∂κh) + (θ − θ;h)((η−1)αλ∂λSβ)(uκ∂κuβ)

= (θ;h − θ)((η−1)αλ∂λSβ)uβ(uκ∂κh) + (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

= (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh) + (θ − θ;h)q((η−1)αλ∂λSβ)Sβ .
(8.22)

Using (8.21) to substitute for the first product on RHS (8.20), and using (8.22)
to substitute for the second and third products on RHS (8.20), we arrive at
the desired identity (8.2c).

• Proof of (8.3a): We simply use (4.1) to express the second product on
LHS (8.3a) as follows:

(θ − θ;h)(η−1)κλ(∂κh)(∂λSα) = (θ − θ;h)(η−1)ακ(∂λh)(∂κSλ).

• Proof of (8.3b): We use Eq. (2.17) to substitute for the last factor ∂λuλ on
LHS (8.3b) and then appeal to Eq. (2.13b).

• Proof of (8.3c): We first use (4.18) to express the first product on LHS (8.3c)
as follows:

(θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

= (θh − θ;h;h)((η−1)ακ∂κh)(uλ∂λuβ)Sβ

+ (θ;h;h − θh)q((η−1)ακ∂κh)SλSλ. (8.23)

Using (8.23) to substitute for the first product on LHS (8.3c), we arrive at the
desired identity.

• Proof of (8.3d): To prove (8.3d), we first use Eq. (2.17) to express the last
product on LHS (8.3d) as follows:

(θ − θ;h)Sα(∂κuκ)(∂λuλ) = c−4(θ − θ;h)Sα(uκ∂κh)(uλ∂λh). (8.24)

Using (8.24) to substitute for the last product on LHS (8.3d) and appealing
to Eq. (2.13b), we arrive at the desired identity.

• Proof of (8.3e): We first use (2.22) to substitute for the factor uκ∂κuλ in the
last product on LHS (8.3e), thereby obtaining the following identity:

(θ;h − θ)Sα(uκ∂κuλ)(∂λh) = (θ − θ;h)Sα(η−1)κλ(∂κh)(∂λh)
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+ (θ − θ;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)qSα(Sκ∂κh). (8.25)

Using (8.25) to substitute for the last product on LHS (8.3e), we arrive at the
desired identity.

• Proof of (8.3f): We first use (4.1), (4.4), and the first equality in (6.1) to
express the last product on LHS (8.3f) as follows:

(θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ) = (θ;h − θ)(∂κuα)(uβ∂βSκ)

= (θ − θ;h)(∂κuα)(Sλ∂λuκ)

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ q(θ;h − θ)(uκ∂κuα)SλSλ. (8.26)

Using (8.26) to substitute for the last product on LHS (8.3f), we arrive at the
desired identity.

• Proof of (8.3g): We use (4.1) and (4.4) to express the first product on
LHS (8.3g) as follows:

(θ − θ;h)(uκ∂κSα)(∂λuλ) = (θ − θ;h)(uκ(η−1)αβ∂βSκ)(∂λuλ)

= (θ;h − θ)Sβ((η−1)ακ∂κuβ)(∂λuλ). (8.27)

Using (8.27) to substitute for the first product on LHS (8.3g), we conclude the
desired identity.

• Proof of (8.3h): To prove (8.3h), we first note the following identity, which
we derive below:

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ − θ;h)Sκ(∂βuκ)((η−1)αλ∂λuβ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + qc−2(θ − θ;h)SβSβ((η−1)ακ∂κh).

(8.28)

Using (8.28) to substitute for the sum of the second and third products on
LHS (8.3h), we conclude the desired identity (8.3h).

It remains for us to prove (8.28). To proceed, we first use (4.1) and (4.4)
to express the second product on LHS (8.28) as follows:

(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ;h − θ)(uκ∂βSκ)((η−1)αλ∂λuβ)

= (θ − θ;h)(Sβ∂λuβ)((η−1)ακ∂κuλ)



Relativistic Euler

= (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ)

+ (θ;h − θ)((η−1)ακ∂κuβ)Sβ(∂λuλ)

+ (θ − θ;h)(Sβ∂λuβ)((η−1)ακ∂κuλ), (8.29)

where to obtain the last equality, we have added and subtracted

(θ;h − θ)((η−1)ακ∂κuβ)Sβ(∂λuλ).

Next, we use Eq. (2.17) to substitute for the factor ∂λuλ in the first product
on RHS (8.29), which allows us to express the product as follows:

(θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ)

= c−2(θ;h − θ)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

= c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ;h − θ)((η−1)ακ∂κuβ)Sβ(uλ∂λh), (8.30)

where to obtain the last equality, we have added and subtracted

c−2(θ − θ;h)(uλ∂λuβ)Sβ((η−1)ακ∂κh).

Next, we use Eq. (4.18) to express the first product on RHS (8.30) as follows:

c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

= c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ qc−2(θ;h − θ)SκSκ((η−1)αλ∂λh). (8.31)

Combining (8.29)–(8.31), we find that

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

= (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + (θ;h − θ)(Sβ∂λuβ)((η−1)ακ∂κuλ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh). (8.32)

Using (8.32) to substitute for the first product on LHS (8.28), we deduce

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= 2(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + (θ;h − θ)(Sβ∂λuβ)(η−1)ακ(∂κuλ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh). (8.33)
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Next, we use (4.1) and (4.4) to express the first product on RHS (8.33) as

2(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= 2(θ;h − θ)(uκ∂βSκ)((η−1)αλ∂λuβ)

= 2(θ − θ;h)(Sκ∂βuκ)((η−1)αλ∂λuβ). (8.34)

Using (8.34) to substitute for the first product on RHS (8.33), we arrive at the
desired identity (8.28). This completes the proof of (8.3h).

• Proof of (8.3i): We use the identity (4.18) to substitute for the factor Sλ∂λh
on LHS (8.3i), thus obtaining

(θ − θ;h)uα(∂κuκ)(Sλ∂λh) = (θ;h − θ)uα(∂κuκ)Sβ(uλ∂λuβ)

+ (θ − θ;h)quα(∂κuκ)SλSλ. (8.35)

Using (8.35) to substitute for the first product on LHS (8.3i), we arrive at the
desired identity.

• Proof of (8.3j): We first use Eq. (4.1) to express the last product on LHS (8.3j)
as follows:

(θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ)

= (θ − θ;h)uα(∂κh)(uβ∂βSκ)

= (θ − θ;h)uα(uκ∂κh)(∂λSλ)

+ (θ;h − θ)uαuλ {(∂λh)(∂κSκ) − (∂κh)(∂λSκ)} , (8.36)

where to obtain the second equality in (8.36), we added and subtracted
(θ;h − θ)uα(uκ∂κh)(∂λSλ). Next, we solve for ∂λSλ in terms of the remaining
terms in definition (2.16b) and then use the resulting identity to algebraically
substitute for the factor ∂λSλ in the first product on RHS (8.36), which yields
the identity

(θ − θ;h)uα(uκ∂κh)(∂λSλ) = n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uα(uκ∂κh)(Sλ∂λh)

+ c−2(θ − θ;h)uα(uκ∂κh)(Sλ∂λh). (8.37)

Next, we use Eq. (2.17) to substitute for the factor uκ∂κh in the last product
on RHS (8.37), which yields the identity

(θ − θ;h)uα(uκ∂κh)(∂λSλ) = n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)uα(∂κuκ)(Sλ∂λh). (8.38)

Substituting RHS (8.38) for the first product on RHS (8.36) and then using
the resulting identity to substitute for the last product on LHS (8.3j), we arrive
at the desired identity (8.3j).
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• Proof of (8.3k): We first use Eq. (2.22) to substitute for the factor of uκ∂κuβ

in the second product on LHS (8.3k), which yields the identity

(∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

= (∂κuκ)εαβγδ(∂βh)uγ�δ − c−2(uκ∂κh)εαβγδuβ(∂γh)�δ

+ c−2qεαβγδSβ(∂γh)�δ. (8.39)

Using Eq. (2.17) to substitute for the factor ∂κuκ in the first product on
RHS (8.39) and taking into account the antisymmetry of ε, we see that the
first and second products on RHS (8.39) cancel, which yields the desired iden-
tity (8.3k).

• Proof of (8.3l): We simply use Eq. (2.22) to substitute for the factor uκ∂κuσ

on LHS (8.3l).

• Proof of (8.3m): We simply multiply Eq. (4.19) by (θ;h − θ)(η−1)ακ∂κh.

• Proof of (8.3n): We use Eq. (4.18) to substitute for the factor (uκ∂κuσ)Sσ

in the first product on LHS (8.3n) and Eq. (2.17) to substitute for the factor
uλ∂λh in the second product on LHS (8.3n).

• Proof of (8.3o): We simply use Eq. (2.24) to substitute for the factor uλ∂λSα

in the second product on LHS (8.3o).

• Proof of (8.3p): (8.3p) follows from (4.3). �

8.2. The Transport-div-curl System

Armed with Lemma 8.1, we now derive the main result of this section.

Proposition 8.2 (The transport-div-curl system for the vorticity). Assume that
(h, s, uα) is a C3 solution to (2.17)–(2.19) + (2.20). Then the divergence of
the vorticity vectorfield �α defined in (2.5) verifies the following identity:

∂α�α = −�κ∂κh + 2q�κSκ. (8.40)

Moreover, the rectangular components Cα of the modified vorticity of the
vorticity, which is defined in (2.16a), verify the following transport equations:

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuλ)Cλ

− 2εαβγδuβ(∂γ�κ)(∂δuκ)

+ (θ;h − θ)
{
(η−1)ακ + 2uαuκ

}{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+ n(θ − θ;h)uα(uκ∂κh)D
+ (θ − θ;h)qSα∂κSκ + (θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ Q(Cα) + L(Cα), (8.41)

where Q(Cα) is the linear combination of null forms defined by

Q(Cα) := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)}
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+
{
(θ;h;h − θh) + c−2(θ − θ;h)

}
(η−1)αλSβuκ×

{(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h − θ)Sκuλ {(∂κuα)(∂λh) − (∂λuα)(∂κh)}
+ (θ;h − θ)

{
(η−1)ακ + uαuκ

}
Sβ×

{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}

+ (θ;h − θ)Sα
{
(∂κuλ)(∂λuκ) − (∂κuκ)(∂λuλ)

}

+ (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+ Sα
{
c−2(θh − θ;h;h) + c−4(θ;h − θ)

}
(g−1)κλ(∂κh)(∂λh), (8.42)

and L(Cα), which is at most linear in the derivatives of the solution variables,
is defined by

L(Cα) :=
2q

H
�κSκ�α − 2

H
�α(�κ∂κh)

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

− 2qεαβγδuβSγ�κ(∂δuκ) − q(∂κuκ)εαβγδSβuγ�δ

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + c−2qεαβγδSβ(∂γh)�δ

− c−2quαεκβγδSκuβ(∂γh)�δ

+ q(θ;h − θ)SκSκ(uλ∂λuα)

+ q(θ;h − θ)uαSκSκ(uλ∂λh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ − θ;h)q;hSα(Sκ∂κh)

+ q(θ;h;h − θh)SκSκ((η−1)αλ∂λh) + (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh) + (θ;h − θ)q;hSκSκ((η−1)αλ∂λh).
(8.43)

Proof. We split the proof into several pieces.

• Proof of (8.40): First, from definition (2.5) and the antisymmetry of εκλγδ,
we deduce

∂κ�κ = −εκλγδ(∂κuλ)∂γ(Huδ). (8.44)

Next, using (4.16), we deduce that

RHS (8.44) = �λ(uκ∂κuλ) − �κuλ(∂κuλ) − θεκλγδ(∂κuλ)Sγuδ. (8.45)

Using (4.3), we see that the second product on RHS (8.45) vanishes. Moreover,
using Eq. (2.22) and the identity (4.2), we can express the first product on
RHS (8.45) as follows:

�λ(uκ∂κuλ) = −�κ∂κh + q�κSκ. (8.46)

In addition, using definition (2.7) and the identity (4.23), we can express the
last product on RHS (8.45) as follows:

−θεκλγδ(∂κuλ)Sγuδ = q�κSκ. (8.47)
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Combining these calculations, we arrive at the desired identity (8.40).

• Proof of (8.41): The proof is a series of lengthy calculations in which we
observe many cancellations. We start by using (8.1a)–(8.1g) to substitute for
all of the terms on the third through seventh lines of RHS (7.4) except for
the term −εαβγδuβ(∂γ�κ)(∂δuκ) from the fifth line, which we leave as is. We
also use (8.40) to express the fourth product on RHS (8.1e) as 1

H �α(∂κ�κ) =
− 1

H �α(�κ∂κh) + 2q
H �α�κSκ, and we use (8.2a)–(8.2c) to substitute for the

four products (which depend on the second derivatives of h) on the sixth-
to-last and fifth-to-last lines of RHS (7.4), thereby obtaining the following
equation (where at this stage in the argument, we have simply performed a
term-by-term substitution and have not yet organized the terms):

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

− uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

+
1
H

(�κ∂κ�α) − 1
H

(�κ∂κh)�α

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ)

− εαβγδ(∂βh)uγ�κ(∂δuκ) + (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ
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+ q(θ;h − θ)uα(uκ∂κh)SλSλ + q(θ − θ;h)Sα(Sκ∂κh)

− εαβγδ(∂βh)uγ�λ(∂δuλ) + qεαβγδSβuγ�λ(∂δuλ)

− εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh) +
2q

H
�α�κSκ

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ

− (∂κuκ)vortα(�)

+
1
H

�α�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh)

+ (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

+ (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ;h − θ)Sα(∂κuλ)(∂λuκ)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh) + (θ;h − θ)Sα(∂κuκ)(uλ∂λh)
+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh)

+ (θ − θ;h)q;sS
αSκSκ

+ uκ∂κ

{
(θ;h − θ)uα(Sλ∂λh)

}

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh)

+ uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)
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+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ). (8.48)

Next, we bring the four perfect-derivative terms uκ∂κ{· · · } on RHS (8.48)
over to the left-hand side, which yields the equation

uκ∂κ

{
vortα(�) + c−2εαβγδuβ(∂γh)�δ + (θ − θ;h)Sα(∂λuλ)

+ (θ − θ;h)uα(Sλ∂λh) + (θ;h − θ)(η−1)αλSβ(∂λuβ)
}

= vortκ(�)∂κuα − 2(∂κuκ)vortα(�) + uα(uκ∂κuβ)vortβ(�) + · · · ,
(8.49)

where the terms · · · do not involve vort(�). Next, we solve for vort(�) in terms
of the remaining terms in definition (2.16a) and then use the resulting identity
to algebraically substitute for the four instances of vort(�) in Eq. (8.49) (note
in particular that the terms in braces on LHS (8.49) are equal to Cα). In total,
this yields the following equation, where we have placed the terms generated
by the algebraic substitution on the first through tenth lines of RHS (8.50):

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuβ)Cβ

− c−2εκβγδ(∂κuα)uβ(∂γh)�δ + (θ;h − θ)(Sκ∂κuα)(∂λuλ)

+ (θ;h − θ)(uκ∂κuα)(Sλ∂λh) + (θ − θ;h)(η−1)κλ(∂κuα)Sβ(∂λuβ)

+ 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ + 2(θ − θ;h)Sα(∂κuκ)(∂λuλ)

+ 2(θ − θ;h)uα(∂κuκ)(Sλ∂λh)

+ 2(θ;h − θ)(∂κuκ)Sβ((η−1)αλ∂λuβ)

− uα(uκ∂κuσ)c−2εσβγδuβ(∂γh)�δ

+ (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ (θ;h − θ)uα(uκ∂κuβ)uβ(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ)

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ
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+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

+
1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh)

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ)

− εαβγδ(∂βh)uγ�κ(∂δuκ) + (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh) + (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ + q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh)

− εαβγδ(∂βh)uγ�λ(∂δuλ) + qεαβγδSβuγ�λ(∂δuλ)

− εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh) +
2q

H
�α�κSκ

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ

+
1
H

�α�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)
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+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh) + (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ) + (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

+ (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh)

+ (θ − θ;h)q;sS
αSκSκ

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh) + (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh)

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ + (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα) + (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ). (8.50)

Next, we reorganize the terms on RHS (8.50) to obtain the equation

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuβ)Cβ +
21∑

i=1

Qi + L , (8.51)

where

Q1 := −2εαβγδuβ(∂γ�κ)(∂δuκ), (8.52)

Q2 := (θ;h − θ)((η−1)ακ∂κh)∂λSλ + (θ − θ;h)(η−1)κλ(∂κh)(∂λSα), (8.53)

Q3 := (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ − θ;h)uα(uκ∂κSλ)(∂λh), (8.54)

Q4 := (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh) + (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ),
(8.55)

Q5 := (θ;h;h − θh)(η−1)ακ(∂κh)(Sλ∂λh)

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ), (8.56)

Q6 := c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ − θ;h)Sα(∂κuκ)(∂λuλ),
(8.57)
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Q7 := (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh), (8.58)

Q8 := (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ − θ;h)Sα(∂κuκ)(∂λuλ), (8.59)

Q9 := (θ;h − θ)(Sκ∂κuα)(∂λuλ) + (θ;h − θ)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ), (8.60)

Q10 := (θ;h − θ)(Sκ∂κuα)(uλ∂λh) + (θ − θ;h)(uκ∂κuα)(Sλ∂λh), (8.61)

Q11 := (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ), (8.62)

Q12 := 2(θ;h − θ)(∂κuκ)(η−1)αλSβ(∂λuβ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ), (8.63)

Q13 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ), (8.64)

Q14 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ), (8.65)

Q15 := (∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ, (8.66)

Q16 := −c−2uαεσβγδ(uκ∂κuσ)uβ(∂γh)�δ, (8.67)

Q17 := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} , (8.68)

Q18 := (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ), (8.69)

Q19 := (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh), (8.70)

Q20 := (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα), (8.71)

Q21 := (θ;h − θ)uα(uκ∂κuβ)(uβSλ∂λh), (8.72)

and

L := − 2
H

�α(�κ∂κh) +
2q

H
�α�κSκ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ − qεαβγδuβSγ�κ(∂δuκ)

+ 2qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ
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+ q(θ;h − θ)((η−1)κα∂κh)SλSλ + q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh)

− qεαβγδuβ(∂γuκ)�κSδ

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ + (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.73)

Note that the terms on RHSs (8.52)–(8.72) are precisely quadratic in the
first-order derivatives of the solution variables (h, uα,�α, Sα)α=0,1,2,3 while
the terms on RHS (8.73) are at most linear in the derivatives of the solution
variables. We will now show that Q1, Q2, · · · , Q21 can be expressed as null
forms or terms that are at most linear in the derivatives of the solution vari-
ables. To this end, we simply use (8.3a)–(8.3p) to algebraically substitute for
Q2, Q4, Q5, Q6, Q7, Q9, Q11, Q12, Q13, Q14, Q15, Q16, Q18, Q19, Q20, and
Q21 (we do not substitute for Q1, Q3, Q8, Q10, and Q17 since these terms are
already manifestly linear combinations of null forms). Following this substitu-
tion, there are only two kinds of terms on RHS (8.51): null forms and terms
that are at most linear in the derivatives of the solution variables. We now place
all null forms on RHS (8.42) except for null forms that involve the derivatives
of � or S; these null forms we place directly on RHS (8.41). We then place all
terms that are linear in C, linear in D, linear in the first-order derivatives of
�, or linear in the first-order derivatives of S directly on RHS (8.41). Finally,
we place all remaining terms, which are at most linear in the derivatives of
the solution variables and do not depend on the derivatives of � or S, on
RHS (8.43). This completes the proof of the proposition. �

9. Local Well-Posedness with Additional Regularity for the
Vorticity and Entropy

Our main goal in this section is to prove Theorem 9.12, which is a local well-
posedness result for the relativistic Euler equations based on our new formu-
lation of the equations, that is, based on the equations of Theorem 3.1. The
main new feature of Theorem 9.12 compared to standard local well-posedness
results for the relativistic Euler equations (see Theorem 9.10 for a statement
of standard local well-posedness) is that it yields an extra degree of differen-
tiability for the vorticity and the entropy, assuming that the initial vorticity
and entropy enjoy the same extra differentiability. We stress that this gain
in regularity holds even though the logarithmic enthalpy and four-velocity do
not generally enjoy the same gain. As we described in Sect. 1.2, this extra
regularity for the vorticity and the entropy is essential for the study of shocks
in more than one spatial dimension.
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For convenience, instead of proving local well-posedness for the relativistic
Euler equations on the standard Minkowski spacetime background, we instead
consider the spacetime background (R×T

3,η), where the “spatial manifold” T
3

is the standard three-dimensional torus and, relative to standard coordinates
on R × T

3, ηαβ := diag(−1, 1, 1, 1) is the standard Minkowski metric. Thus,
strictly speaking, in this section, η denotes a tensor on a different manifold
compared to the rest of the paper, but this minor change has no substantial
bearing on the discussion. In particular, the relativistic Euler equations on
(R×T

3,η) take the same form that they take in Theorem 3.1. The advantage
of the compact spatial topology is that it allows for a simplified approach
to some technical aspects of the proof of local well-posedness. However, the
arguments that we give in this section feature all of the main ideas needed to
prove local well-posedness on the standard Minkowski spacetime background
(in which the spacetime manifold is diffeomorphic to R

1+3).

9.1. Notation, Norms, and Basic Tools from Analysis

9.1.1. Notation. Throughout this section, {xα}α=0,1,2,3 denote standard rect-
angular coordinates on R × T

3, where {xa}a=1,2,3 are standard local coordi-
nates on T

3, and we often use the alternate notation t := x0. Note that even
though {xa}a=1,2,3 are only locally defined on T

3, the coordinate partial de-
rivative vectorfields {∂a}a=1,2,3 can be extended to a smooth global frame on
T

3; by a slight abuse of notation, we will denote the globally defined “spa-
tial” frame by {∂a}a=1,2,3, and the corresponding globally defined “spacetime
frame” by {∂α}α=0,1,2,3. Also, we often use the alternate partial derivative
notation ∂t := ∂0.

Σt := {(t, x) | x ∈ T
3} (9.1)

denotes the standard flat constant-time hypersurface.
Throughout Sect. 9, we use the same conventions for lowering and raising

indices stated in Sect. 2.1, i.e., we lower and raise indices with the Minkowski
metric and its inverse. Note that for Latin “spatial” indices, this is equivalent
to lowering and raising via the Euclidean metric δij = diag(1, 1, 1) and its
inverse δij = diag(1, 1, 1). Finally, we note that we sometimes identify the
Euclidean metric or its inverse with the Kronecker delta.

To each “spatial multi-index” �I = (ι1, ι2, ι3), where the ιa are non-
negative integers, we associate the spatial differential operator ∂ �I := ∂ι1

1 ∂ι2
2 ∂ι3

3 .
Note that ∂ �I is an operator of order | �I| := ι1 + ι2 + ι3.

If V is a spacetime vectorfield or a one-form, then V denotes the η-
orthogonal projection of V onto Σt, that is, the “spatial part” of V . For ex-
ample, � is the vectorfield on Σt with rectangular components �i := �i for
i = 1, 2, 3. Moreover, we use the notation

(3)curli(W ) := εijk∂jWk (9.2)

to denote the standard Euclidean curl operator acting on one-forms on Σt,
where εijk is the fully antisymmetric symbol normalized by ε123 = 1.
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9.1.2. Norms.

Definition 9.1 (Lebesgue and Sobolev norms). We define the following Lebesgue
norms for scalar functions f :

‖f‖L∞(T3) := ess supx∈T3 |f(x)|, (9.3)

‖f‖L2(T3) :=
{∫

T3
f2(x) dx

}1/2

, (9.4)

where in the rest of Sect. 9, dx := dx1dx2dx3 denotes the standard volume
form on T

3 induced by the Euclidean metric diag(1, 1, 1).

Remark 9.2 (Extending the definitions of the norms from T
3 to Σt). In our

proof of local well-posedness, we will use norms in which the manifold T
3

from Definition 9.1 is replaced with the constant time slice Σt = {t} × T
3,

which is diffeomorphic to T
3. We will not explicitly define these norms along

Σt since their definitions are obvious analogs of the ones appearing in Defini-

tion 9.1. For example, ‖f‖L2(Σt) :=
{∫

Σt
f2(t, x) dx

}1/2

, which is also equal

to
{∫

T3 f2(t, x) dx
}1/2. Here, we are using that the volume form induced by

the Minkowski metric on Σt equals dx. Similar remarks apply to other norms
on T

3 introduced later in this subsubsection.

We define the following Sobolev norms for integers r ≥ 0:

‖f‖Hr(T3) :=

⎧
⎨

⎩

∑

| �I|≤r

‖∂ �If‖2
L2(R3)

⎫
⎬

⎭

1/2

, (9.5a)

‖f‖Ḣr(T3) :=

⎧
⎨

⎩

∑

| �I|=r

‖∂ �If‖2
L2(R3)

⎫
⎬

⎭

1/2

. (9.5b)

If r ∈ R is not an integer, then we define26

‖f‖Hr(T3) :=

⎧
⎨

⎩

∑

(k1,k2,k3)∈Z3

(1 + |k|2)r
∣
∣∣f̂(k1, k2, k3)

∣
∣∣
2

⎫
⎬

⎭

1/2

, (9.6)

where f̂(k1, k2, k3) :=
∫
T3 f(x)e−2πi

∑3
a=1 xaka dx is the spatial Fourier trans-

form of f and |k|2 :=
∑3

a=1 k2
a.

If U = (U1, . . . , Um) is an array of scalar-valued functions and ‖·‖ denotes
any of the norms introduced in this subsubsection, then we define

‖U‖ :=
m∑

a=1

‖Ua‖. (9.7)

26As is well known, when r is an integer, RHS (9.6) defines a norm that is equivalent to the
norm defined in (9.5a).
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Definition 9.3 (Some additional function spaces). If B is a Banach space with
norm ‖ · ‖B and r ≥ 0 is an integer, then Cr([0, T ],B) denotes the space of
r-times continuously differentiable functions from [0, T ] to B. We omit the
superscript when r = 0. We denote the corresponding norm of an element f of
this space by ‖f‖Cr([0,T ],B) := maxt∈[0,T ]

∑r
k=0 ‖f (k)(t)‖B, where f (k) denotes

the kth derivative of f with respect to t.
L∞([0, T ],B) denotes the space of functions from [0, T ] to B that are

essentially bounded over the interval [0, T ]. We denote the corresponding norm
of an element f of this space by ‖f‖L∞([0,T ],B) := ess supt∈[0,T ]‖f(t)‖B.

Cr(T3) denotes the space of functions on T
3 that are r-times contin-

uously differentiable. We omit the superscript when r = 0. We denote the
corresponding norm of an element f of this space by

‖f‖Cr(T3) :=
∑

| �I|≤r

max
x∈T3

|∂ �If(x)|.

We now fix, for the rest of Sect. 9, an integer N subject to

N ≥ 3. (9.8)

9.1.3. Basic Analytical Tools. In our analysis, we will rely on the following
standard results; see, e.g., [1,26,38] for proofs.

Lemma 9.4 (Sobolev embedding, product, difference, and interpolation
estimates). If r > 3/2, then Hr(T3) continuously embeds into C(T3), and there
exists a constant Cr > 0 such that the following estimate holds for v ∈ Hr(T3):

‖v‖C(T3) ≤ Cr‖v‖Hr(T3). (9.9)

Let r ≥ 0 be an integer and let v := (v1, . . . , vA) and w := (w1, . . . , wB)
be finite-dimensional arrays of real-valued functions on T

3 such that va ∈
Ḣr(T3) ∩ C(T3) for 1 ≤ a ≤ A and wb ∈ C(T3) 1 ≤ b ≤ B. Let

Ir :=

{

( �I1, . . . , �IA) |
A∑

a=1

| �Ia| = r

}

. (9.10)

Assume that w(T3) ⊂ intK , where K is a compact subset of RB, and let f be
a smooth real-valued function on an open subset of RB containing K . Then
the following estimate holds:

max
( �I1,..., �IA)∈Ir

∥∥∥∥∥
f(w)

A∏

a=1

∂ �Ia
va

∥∥∥∥∥
L2(T3)

≤ Cf,K ,r

A∑

a=1

‖va‖Ḣr(T3)

∏

b�=a

‖vb‖C(T3). (9.11)

Moreover, under the same assumptions stated in the previous paragraph,
if ( �I1, . . . , �IA) ∈ Ir, then the map (v, w) → f(w)

∏A
a=1 ∂ �Ia

va is continuous

from
(
Ḣr(T3) ∩ C(T3)

)A

×(C(T3)
)B to L2(T3). In particular, let δ = δw > 0
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be such that the following holds27:if d(p,w(T3)) < δ, d(q, w(T3)) < δ, and
d(p, q) < δ, where d is the standard Euclidean distance function on R

B, then
the straight-line segment joining p to q is contained in int K . Then if (v, w)
and (ṽ, w̃) are two array pairs of the type described in the previous paragraph
such that ‖w − w̃‖C(T3) ≤ δ, and if r > 3/2, then the following estimate
holds (where the function f is assumed to be the same in both appearances on
LHS (9.12) and Ir is defined by (9.10)):

max
( �I1,..., �IA)∈Ir

∥
∥∥∥∥
f(w)

A∏

a=1

∂ �Ia
va − f(w̃)

A∏

a=1

∂ �Ia
ṽa

∥
∥∥∥∥

L2(T3)

≤ Cf,K ,‖v‖Hr(T3),‖ṽ‖Hr(T3),A,r

{‖v − ṽ‖Hr(T3) + ‖w − w̃‖C(T3)

}
. (9.12)

Furthermore, if r > 3/2 and va ∈ Hr(T3) for a = 1, 2, then v1v2 ∈
Hr(T3), and there exists a constant Cr > 0 such that

‖v1v2‖Hr(T3) ≤ Cr‖v1‖Hr(T3)‖v2‖Hr(T3), (9.13)

and function multiplication (v1, v2) → v1v2 is a continuous map from Hr(T3)×
Hr(T3) to Hr(T3).

Finally, if 0 ≤ s ≤ r and v ∈ Hr(T3), then there exists a constant
Cr,s > 0 such that

‖v‖Hs(T3) ≤ Cr,s‖v‖1− s
r

L2(T3)‖v‖ s
r

Hr(T3). (9.14)

Remark 9.5 (The same estimates hold along Σt). All of the results of
Lemma 9.4 hold verbatim if we replace T

3 by Σt throughout.

9.1.4. An L2-in-time Continuity Result for Transport Equations. We will use
the following simple technical result in our proof of local well-posedness.

Lemma 9.6 (An L2-in-time continuity result for transport equations). Let T >
0. Assume that F ∈ L∞([0, T ], L2(T3)

)
, and let f be the solution to the inho-

mogeneous transport equation initial value problem

uα∂αf = F , (9.15)

f |Σ0 := f̊ ∈ L2(Σ0). (9.16)

Assume further that uα ∈ L∞([0, T ], C1(T3)
)

for α = 0, 1, 2, 3. Then

f ∈ C
(
[0, T ], L2(T3)

)
. (9.17)

Proof. We will prove right continuity at t = 0; continuity at any other time
t ∈ (0, T ] could be proved using similar arguments. More precisely, we will
show that

lim
t↓0

∥∥∥f(t, ·) − f̊
∥∥∥

L2(T3)
= 0. (9.18)

27Such a δ > 0 exists due to the compactness of w(T3) and K , where the compactness of
w(T3) follows from the assumption that the va are continuous.



M. M. Disconzi, J. Speck Ann. Henri Poincaré

To proceed, we let {f̊k}∞
k=1 ⊂ C∞(T3) be a sequence of smooth functions such

that

‖f̊ − f̊k‖L2(Σ0) ≤ 1
k

. (9.19)

Note that

uα∂α(f − f̊k) = −ua∂af̊k + F . (9.20)

Hence, a standard integration by parts argument based on the divergence
identity

∂t

{
(f − f̊k)

}2

=
{

∂a

(
ua

u0

)}
(f − f̊k)2

+ 2
(f − f̊k)

u0

{
−ua∂af̊k + F

}

− ∂a

{(
ua

u0

)
(f − f̊k)2

}
(9.21)

yields that for 0 ≤ t ≤ T , we have

‖f − f̊k‖2
L2(Σt)

= ‖f̊ − f̊k‖2
L2(Σ0)

+
∫ t

τ=0

∫

Στ

{
∂a

(
ua

u0

)}
(f − f̊k)2 dx dτ

+ 2
∫ t

τ=0

∫

Στ

(f − f̊k)
u0

{
−ua∂af̊k + F

}
dx dτ. (9.22)

In particular, from (9.19), (9.22), our assumptions on F and uα, and Young’s
inequality, we find that if 0 ≤ t ≤ T , then there is a constant CT (independent
of k) such that

‖f − f̊k‖2
L2(Σt)

≤ 1
k2

+ CT

∫ t

τ=0

{
1 + ‖f̊k‖2

H1(Σ0)

}
dτ

+ CT

∫ t

τ=0

‖f − f̊k‖2
L2(Στ ) dτ. (9.23)

From (9.23) and Gronwall’s inequality, we deduce (allowing CT to vary from
line to line in the rest of the proof) that if 0 ≤ t ≤ T , then the following
inequality holds:

‖f − f̊k‖2
L2(Σt)

≤
{

1
k2

+ CT t
(
1 + ‖f̊k‖2

H1(Σ0)

)}
exp(CT t). (9.24)

From (9.24), (9.19), and the triangle inequality, it follows that

lim
t→0+

sup
0≤τ≤t

‖f − f̊‖L2(Στ ) ≤ 2
k

. (9.25)

Finally, allowing k → ∞ in (9.25), we conclude (9.18). We have therefore
proved the lemma. �
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9.2. The Regime of Hyperbolicity

Our proof of well-posedness relies on a standard assumption, namely that the
solution lies in the interior of the region of state space where the equations are
hyperbolic without degeneracy. This notion is precisely captured by the next
definition.

Definition 9.7 (Regime of hyperbolicity). We define the regime of hyperbolicity
H to be the following subset of state-space:

H :=
{
(h, s, u1, u2, u3) ∈ R

5 |0 < c(h, s) ≤ 1
}

. (9.26)

9.3. Standard Local Well-Posedness

Our principal goal in this subsection is to state Theorem 9.12, which is our main
local well-posedness result exhibiting the gain in regularity for the vorticity
and entropy. Most aspects of the theorem are standard. We summarize these
standard aspects in Theorem 9.10, which will serve as a precursor to our proof
of Theorem 9.12.

Remark 9.8 (Some non-standard aspects of Theorem 9.12). One of the non-
standard aspects of Theorem 9.12 is that it shows the continuous time de-
pendence of the top-order derivatives of � and s in the norm ‖ · ‖L2(Σt). The
proof relies on some results that are not easy to locate in the literature, tied
in part to the fact that the required estimates are of elliptic–hyperbolic type.
In our proof of Theorem 9.12, we will show how to obtain these top-order
time-continuity results. A second non-standard aspect of Theorem 9.12 is that
the transport-div-curl systems [specifically (3.9a)–(3.9b) and (3.11a)–(3.11b)]
leading to the gain in regularity for � and s involve spacetime divergence and
curl operators. Hence, additional arguments are needed to obtain the needed
spatial elliptic estimates along Σt; the key ingredients in this vein are provided
by the identity (9.34) and Lemma 9.20.

Remark 9.9 (The “fundamental” initial data). In the rest of Sect. 9, we view
h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 to be the “fundamental” initial data in the
following sense: with the help of the relativistic Euler equations (2.17)–(2.19)
+ (2.20), along Σ0, all of the other quantities that are relevant for our analysis
can be expressed in term of the fundamental initial data; see Lemma 9.17.

Theorem 9.10 (Standard local Well-Posedness). Let h̊ := h|Σ0 , s̊ := s|Σ0 , and
ůi := ui|Σ0 be initial data28 for the relativistic Euler equations (2.17)–(2.19)
+ (2.20). Assume that for some integer N ≥ 3, we have

h̊, s̊, ůi ∈ HN (Σ0). (9.27)

Assume moreover that there is a compact subset K ⊂ intH (where intH is the
interior of H) such that for all p ∈ Σ0, we have

(̊h(p), s̊(p), ů1(p), ů2(p), ů3(p)) ∈ intK.

28The datum u0|Σ0 is determined from the other data by virtue of the constraint (2.20).
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Then there exists a time T > 0 depending only on29 K, ‖̊h‖H3(Σ0), ‖̊s‖H3(Σ0),
and ‖ůi‖H3(Σ0), such that a unique classical solution (h, s, uα,�α) exists on
the slab [0, T ] × T

3 and satisfies (h(p), s(p), u1(p), u2(p), u3(p)) ∈ intK for p ∈
[0, T ] × T

3. Moreover, the solution depends continuously on the initial data,30

and its components relative to the standard coordinates enjoy the following
regularity properties:

h, s, uα ∈ C
(
[0, T ],HN (T3)

)
, (9.28a)

Sα, �α ∈ C
(
[0, T ],HN−1(T3)

)
. (9.28b)

Proof. (Discussion of the proof). Theorem 9.10 is standard. Readers can con-
sult, for example, [31] for detailed proofs in the case of the relativistic Euler
equations on a family of conformally flat31 spacetimes. The main step in the
proof is deriving a priori energy estimates for linearized versions of a first-order
formulation of the equations, such as (2.17)–(2.19) + (2.20). For a first-order
formulation that is equivalent (for C1 solutions) to (2.17)–(2.19) + (2.20), this
step was carried out in detail in [31] using the method of energy currents, a
technique that originated in the context of the relativistic Euler equations in
Christodoulou’s foundational work [4] on shock formation. �

Remark 9.11 (C∞ data give rise to C∞ solutions). In view of the Sobolev
embedding result (9.9), we see that Theorem 9.10 implies that C∞ initial data
give rise to (local-in-time) C∞ solutions.

We now state our main local well-posedness theorem. Its proof is located
in Sect. 9.7.

Theorem 9.12 (Local well-posedness with improved regularity for the entropy
and vorticity). Assume the hypotheses of Theorem 9.10, but in addition to (9.27),
assume also that the initial vorticity and entropy enjoy one extra degree of
Sobolev regularity. That is, assume that for some integer N ≥ 3 and i = 1, 2, 3,
we have

h̊, ůi ∈ HN (Σ0), (9.29a)

s̊, �̊i ∈ HN (Σ0), (9.29b)

where � is defined in (2.5) and �̊i := �|iΣ0
.

Then the conclusions of Theorem 9.10 hold, and the solution’s components
relative to standard coordinates enjoy the following regularity properties for

29In fact, using additional arguments not presented here, one can show that for any fixed

real number r > 5/2, the time of existence can be controlled by a function of K, ‖̊h‖Hr(Σ0),

‖̊s‖Hr(Σ0), and ‖ůi‖Hr(Σ0). Of course, if the initial data enjoy additional Sobolev regularity,

then the additional regularity persists in the solution during its classical lifespan.
30In particular, there is a

(
H3(Σ0)

)5
-neighborhood of (̊h, s̊, ůi) such that all data in the

neighborhood launch solutions that exist on the same slab [0, T ] × T
3 and, assuming also

that the data belong to
(
HN (Σ0)

)5
, enjoy the regularity properties stated in the theorem.

31More precisely, in [31], the spacetime metrics are scalar function multiples of the Minkowski
metric on R

1+3.
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α = 0, 1, 2, 3, where T > 0 is the same time from Theorem 9.10:

h, uα ∈ C
(
[0, T ],HN (T3)

)
, (9.30a)

s ∈ C
(
[0, T ],HN+1(T3)

)
, Sα, �α ∈ C

(
[0, T ],HN (T3)

)
. (9.30b)

In particular, according to (9.30b), the additional regularity of the entropy and
vorticity featured in the initial data is propagated by the flow of the equations.
Moreover, the solution depends continuously on the initial data relative the
norms corresponding to (9.30a)–(9.30b).

9.4. A New Inverse Riemannian Metric and the Classification of Various Com-
binations of Solution Variables

In our proof of Theorem 9.12, when controlling the top-order derivatives of the
vorticity and entropy, we will rely on “geometrically sharp” elliptic estimates in
which the precise details of the principal coefficients of the elliptic operators are
important for our arguments. Due to the quasilinear nature of the relativistic
Euler equations, these precise elliptic estimates involve the inverse Riemannian
metric G−1 from the next definition. In particular, we will need to use G−1-
based norms when proving that the top-order derivatives of � and S are
continuous in time with values in L2(T3) [these facts are contained within
the statement (9.30b)]; the role of G−1 in our analysis will become clear in
Sect. 9.7.

Definition 9.13 (An inverse Riemannian metric on Σt). On each Σt, we define
the inverse Riemannian metric G−1 as follows:

(G−1)ij := δij − uiuj

(u0)2
, (9.31)

where δij := diag(1, 1, 1) is the standard Kronecker delta.

Remark 9.14 From the relation ηαβuαuβ = −1, one can easily show that G−1

is Riemannian, that is, of signature (+,+,+).

In proving that the solution depends continuously on the initial data, we
will use a modified version of Kato’s framework [17–19]. His framework was
designed to handle hyperbolic systems, while our formulation of the relativistic
Euler equations is elliptic–hyperbolic. For this reason, we find it convenient to
divide the solution variables into various classes, which we provide in the next
definition. Roughly, we will handle the “hyperbolic quantities” using Kato’s
framework, and to handle the remaining quantities, we will use elliptic esti-
mates and algebraic relationships to control them in terms of the hyperbolic
quantities.

Definition 9.15 (Classification of various combinations of solution variables).
We define the hyperbolic quantities H, the elliptic quantities E, and the al-
gebraic quantities AH, AH,E, and A as follows, where the Euclidean curl
operator (3)curl is defined in (9.2):

H := (h, s, ua, ∂ah, ∂aub,�a, Sa, Ca,D)a,b=1,2,3, (9.32a)

E := (∂a�b, ∂aSb)a,b=1,2,3, (9.32b)
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AH :=
(
u0 − 1,�0, S0, C0, ∂th, ∂tu

α, ∂au0, ∂ts
)
α=0,1,2,3;a=1,2,3

∪
(
(G−1)cd∂c�d, (G−1)cd∂cSd,

(3)curla(�), (3)curla(S)
)

a=1,2,3
,

(9.32c)

AH,E := (∂t�α, ∂a�0, ∂tSα, ∂aS0, ∂b�
b, ∂bS

b)α=0,1,2,3;a=1,2,3, (9.32d)

A := AH ∪ AH,E. (9.32e)

Some remarks are in order.

• The point of introducing the algebraic quantities A is that, by virtue of
the relativistic Euler equations, they can be algebraically expressed in
terms of H and E (and thus are redundant); see Lemma 9.17. We stress
that in (9.32c), it is crucial that the inverse metric G−1 is the one from
Definition 9.13; the proof of (9.33a) will clarify that it is essential that
the inverse metric is precisely G−1.

• The elliptic quantities E can be controlled (in appropriate Sobolev norms)
in terms of H via elliptic estimates; see Lemma 9.20 and its proof.

• The hyperbolic quantities H solve evolution equations with source terms
that depend on H and E. In view of the previous point, we see that one
can bound the source terms (in appropriate Sobolev norms) in terms of
H. This will allow us to derive a closed system of energy inequalities that
can be used to estimate H. In view of the previous two points, we see
that the estimates for H imply corresponding estimates for E and A.

Remark 9.16 (The hyperbolic quantities verify first-order hyperbolic equations).
In our proof of local well-posedness, we will use the fact that the hyperbolic
quantities H solve first-order hyperbolic equations. More precisely, the ele-
ments h, s, and ua of (9.32a) satisfy the first-order hyperbolic system (2.17)–
(2.19) + (2.20), the elements ∂ah and ∂aub satisfy hyperbolic equations ob-
tained by taking one spatial derivative of the Eqs. (2.17)–(2.19) + (2.20), and
Sa, �a, Ca, and D respectively satisfy the (spatial components of the) trans-
port Eqs. (3.7), (3.8), (3.11b), and (3.9a); it is in this sense that we consider
the variables H to be “hyperbolic.”

Lemma 9.17 (Expressions for the algebraic quantities in terms of the hy-
perbolic and elliptic quantities). Assume that (h, s, uα) is a smooth solution
to (2.17)–(2.19) + (2.20). Then we can express

AH = f(H), (9.33a)

AH,E = f(H,E), (9.33b)

A = f(H,E), (9.33c)

where in (9.33a)–(9.33c), f is a schematically denoted smooth function that
satisfies f(0) = 0 and that is allowed to vary from line to line.
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Moreover, let �I be a spatial multi-index with | �I| ≥ 1. Then

(G−1)ab∂a∂ �I�b, (G−1)ab∂a∂ �ISb,
(3)curli(∂ �I�)

=
| �I|∑

M=1

| �J1|+···+| �JM |=| �I|

f �J1,..., �JM
(H)

M∏

m=1

∂ �Jm
H. (9.34)

where f �J1,..., �JM
are schematically denoted smooth functions (not necessarily

vanishing at 0) and
∏M

m=1 ∂ �Jm
H schematically denotes an order M monomial

in the derivatives of the elements of H.

Proof. Throughout this proof, f is a smooth function that can vary from line
to line and satisfies f(0) = 0 (except that the functions f �J1,..., �JM

on RHS (9.34)
do not necessarily satisfy f �J1,..., �JM

(0) = 0). Moreover, H and E are as defined
in (9.32a) and (9.32b).

We first prove (9.33a). We must show that the elements of (9.32c) can be
written as smooth functions of the elements of (9.32a) that vanish at 0. We first
note that by the normalization condition ηκλuκuλ = −1, u0 − 1 is a smooth
function of the spatial components of u that vanishes when u1 = u2 = u3 = 0.
From this fact and the identity uκSκ = 0 [see (2.21)], we deduce that S0 is a
smooth function of the spatial components of u and S that vanishes at 0. A
similar result holds for �0 by virtue of (4.2). Next, we note that, in view of the
above discussion and the discussion surrounding Eq. (2.28), we can solve for the
time derivatives of h, s, and uα in terms of their spatial derivatives. Thus far,
we have shown that u0−1,�0, S0, ∂th, ∂tu

α, ∂au0, ∂ts can be expressed as f(H).
In the rest of the proof, we will use these facts without explicitly mentioning
them every time. Next, we use definitions (2.4) and (2.16a) to deduce that
uκCκ = f(H). Using this equation to algebraically solve for C0, we deduce that
C0 = f(H), as desired. We will now show that (G−1)cd∂cSd = f(H). To begin,
we use definition (2.16b) to deduce that ∂iS

i = ∂αSα − ∂tS
0 = nD −Sκ∂κh+

c−2Sκ∂κh−∂tS
0 = f(H)−∂tS

0. Next, using the identity ∂t = uκ∂κ

u0 − ui∂i

u0 and
the evolution equation (3.7) with α = 0, we find that ∂tS

0 = f(H) − ui∂iS
0

u0 .

Moreover, using (2.21), we find that S0 = Sjuj

u0 , from which we deduce that
ui∂iS

0

u0 = f(H) + uiuj∂iSj

(u0)2 . Combining the above calculations, we find that

∂iS
i − uiuj∂iSj

(u0)2 = f(H) which, in view of definition (9.31), yields the desired
relation (G−1)cd∂cSd = f(H). The relation (G−1)cd∂c�d = f(H) can be proved
using a similar argument based on Eqs. (3.8) and (3.11a), and we omit the
details. To show that (3)curla(�) = f(H), we first note that by definition (9.2),
it suffices to show that ∂i�j − ∂j�i = f(H) for i, j = 1, 2, 3. To proceed, we
use (4.10) with V := � [which is applicable in view of (4.2)], definition (2.16a),
and the transport Eq. (3.8) to deduce that ∂i�j − ∂j�i = εijγδu

γvortδ(�) +
uju

κ∂κ�i −uiu
κ∂κ�j +f(H) = f(H), which is the desired result. The fact that

(3)curla(S) = 0 = f(H) is a trivial consequence of the symmetry property (4.1)
and definition (9.2). We have therefore proved (9.33a).
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We now prove (9.33b). We must show that elements of (9.32d) can
be written as smooth functions of the elements of (9.32a) and the elements
of (9.32b) that vanish at 0. To handle ∂t�i,we use the identity ∂t = uκ∂κ

u0 − uj∂j

u0

and the transport Eq. (3.8) to deduce that ∂t�i = uκ∂κ�i

u0 +f(H,E) = f(H,E)
as desired. To handle ∂t�0, we simply use (4.2) to obtain the identity �0 =
�juj

u0 , differentiate this identity with respect to ∂t, and then use the already
proven facts that �j , uα − δα

0 , and their time derivatives are equal to f(H,E).

Similarly, by differentiating the identity �0 = �juj

u0 with ∂a, we conclude that
∂a�0 = f(H,E). The relations ∂tSα = f(H,E) and ∂aS0 = f(H,E) can be
proved using a similar argument based on Eqs. (2.21) and (3.7), and we omit
the details. The facts that ∂b�

b = f(H,E) and ∂bS
b = f(H,E) follow trivially

from the definitions. We have therefore proved (9.33b). Equation (9.33c) then
follows from definition (9.32e) and (9.33a)–(9.33b).

To prove (9.34), we first note that definition (9.32c) and (9.33a) im-
ply that (G−1)ab∂a�b, (G−1)ab∂aSb, and (3)curli(�) are all of the form f(H).
Hence, (9.34) follows from the Leibniz and chain rules and the definition (9.32a)
of H. �

9.5. Elliptic Estimates and the Corresponding Energies

In this subsection, we construct the energies that we will use to control the
top-order derivatives of the vorticity and entropy; see Definition 9.19. The
proof that the energies are coercive relies on elliptic estimates; see the proof
of Lemma 9.20. We start by defining a bilinear form on the relevant Hilbert
space of functions. Lemma 9.20 shows that the bilinear form induces a norm
on the Hilbert space.

Definition 9.18 (A new Hilbert space inner product). Let (�,S) denote the
array of spatial components of the vorticity and entropy gradient (i.e., the
η-orthogonally projection of (�,S) onto Σt, as in Sect. 9.1.1). Let α > 0 be a
parameter and let M−1(t, ·) be an inverse Riemannian metric on Σt. We define
the following bilinear form on the corresponding Hilbert space

(
HN (Σt)

)3 ×
(
HN (Σt)

)3:
〈
(�,S) ,

(
�̃, S̃

)〉

M−1;α
(t)

:= α
∑

| �I|=N−1

∫

Σt

{
(M−1)ab∂a∂ �I�b

}{
(M−1)cd∂c∂ �I�̃d

}
dx

+ α
∑

| �I|=N−1

∫

Σt

{
(M−1)ab∂a∂ �ISb

}{
(M−1)cd∂c∂ �I S̃d

}
dx

+ α
∑

| �I|=N−1

∫

Σt

(M−1)ab(M−1)cdεaciεbdj
(3)curli(∂ �I�)(3)curlj(∂ �I�̃) dx

+ α
∑

| �I|=N−1

∫

Σt

(M−1)ab(M−1)cdεaciεbdj
(3)curli(∂ �IS)(3)curlj(∂ �I S̃) dx
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+
∑

| �I|≤N−1

∫

Σt

δab(∂ �I�a)(∂ �I�̃b) dx +
∑

| �I|≤N−1

∫

Σt

δab(∂ �ISa)(∂ �I S̃b) dx,

(9.35)

where δab is the standard Kronecker delta and εabc is the fully antisymmetric
symbol normalized by ε123 = 1.

We now define the family of energies that we will use to control the
top-order derivatives of the vorticity and entropy.

Definition 9.19 (“Elliptic” energy). Let N ≥ 3 be an integer, let α > 0 be a
parameter (below we will choose it to be sufficiently small), and let M−1(t, ·)
be a C1 inverse Riemannian metric on Σt. We define the square of the “elliptic”
energy EN ;M−1;α[(�,S)] = EN ;M−1;α[(�,S)](t) ≥ 0 as follows:

E
2
N ;M−1;α[(�,S)](t) := 〈(�,S) , (�,S)〉M−1;α (t). (9.36)

In the next lemma, with the help of elliptic estimates, we exhibit the
coercivity of EN ;M−1;α[(�,S)](t). The lemma shows in particular that if α > 0
is sufficiently small (depending on the inverse Riemannian metric M−1), then
the bilinear form from Definition 9.18 is a Hilbert space inner product.

Lemma 9.20 (Energy-norm comparison estimate based on elliptic estimates).
Let T > 0, and let M−1 = M−1(t, x) be an inverse Riemannian metric de-
fined for (t, x) ∈ [0, T ] × T

3. Let λ be the infimum of the eigenvalues of the
3×3 matrix (M−1)ij(t, x) over (t, x) ∈ [0, T ]×T

3, and let Λ be the supremum
of the eigenvalues of the 3 × 3 matrix (M−1)ij(t, x) over (t, x) ∈ [0, T ] × T

3,
and assume that 0 < λ ≤ Λ < ∞. Let EN ;M−1;α[(�,S)] be as in Defini-
tion 9.19. There exist a small constant α∗ > 0 and a large constant C > 0
such that α−1

∗ and C depend continuously in an increasing fashion on (i)
maxi,j=1,2,3 ‖(M−1)ij‖

C
(
[0,T ],C1(T3)

); (ii) Λ; and (iii) λ−1, such that the fol-

lowing comparison estimates hold for t ∈ [0, T ]:

EN ;M−1;α∗ [(�,S)](t) ≤ C

3∑

a=1

‖�a‖HN (Σt)
+ C

3∑

a=1

‖Sa‖HN (Σt)
, (9.37a)

3∑

a=1

‖�a‖HN (Σt)
+

3∑

a=1

‖Sa‖HN (Σt)
≤ CEN ;M−1;α∗ [(�,S)](t). (9.37b)

Proof. We prove only (9.37b) since (9.37a) can be proved using similar but
simpler arguments. Throughout the proof, C > 0 denotes a constant with the
dependence-properties stated in the lemma. To proceed, we note the following
divergence identity for one-forms V on Σt, which can be directly verified:

(M−1)ab(M−1)cd(∂aVb)(∂cVd)

+

1
2 (M−1)ab(M−1)cd(∂aVc−∂cVa)(∂bVd−∂dVb)

︷ ︸︸ ︷
1
2
(M−1)ab(M−1)cdεaciεbdj

(3)curli(V )(3)curlj(V )
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= (M−1)ab(M−1)cd(∂aVc)(∂bVd)

+
1
2
{
∂a

[
(M−1)ab(M−1)cd

]}
[Vc∂bVd + Vc∂dVb]

+
1
2
{
∂c

[
(M−1)ab(M−1)cd

]}
[Va∂bVd + Va∂dVb]

− 1
2
{
∂b

[
(M−1)ab(M−1)cd

]}
[Va∂cVd + Vc∂aVd]

− 1
2
{
∂d

[
(M−1)ab(M−1)cd

]}
[Va∂cVb + Vc∂aVb]

+
1
2
∂b

{
(M−1)ab(M−1)cd [Va∂cVd + Vc∂aVd]

}

+
1
2
∂d

{
(M−1)ab(M−1)cd [Va∂cVb + Vc∂aVb]

}

− 1
2
∂a

{
(M−1)ab(M−1)cd [Vc∂bVd + Vc∂dVb]

}

− 1
2
∂c

{
(M−1)ab(M−1)cd [Va∂bVd + Va∂dVb]

}
. (9.38)

We now integrate (9.38) over Σt with respect to dx and note that the integrals
of the last four (perfect spatial derivative) terms on the right-hand side vanish.
In view of our assumptions on the eigenvalues of (M−1)ij(t, ·), we see that the
integral of the first term (M−1)ab(M−1)cd(∂aVc)(∂bVd) on RHS (9.38) is ≥
λ2
∑3

a,b=1 ‖∂aVb‖2
L2(Σt)

. Also using Young’s inequality, we see that the integrals
of the second through fifth terms on RHS (9.38) (in which a derivative falls on
M−1) are collectively bounded from below by ≥ −λ2

2

∑3
a,b=1 ‖∂aVb‖2

L2(Σt)
−

C
λ2

∑3
a=1 ‖Va‖2

L2(Σt)
. It follows that the integral of (9.38) is bounded from

below by

≥ λ2

2

3∑

a,b=1

‖∂aVb‖2
L2(Σt)

− C

λ2

3∑

a=1

‖Va‖2
L2(Σt)

.

The desired estimate (9.37b) now follows from these considerations with �
and S in the role of V , and definitions (9.35) and (9.36), where α := α∗ > 0 is
chosen so that α∗ C

λ2 = 1
2 , and C

λ2 is the (absolute value of the) coefficient from
the previous inequality. We clarify that, by our conventions, factors of 1

λ2 can
be absorbed into the constant C on RHS (9.37b). �

In the next lemma, we show that some Sobolev norms of the elliptic vari-
ables E can be bounded by corresponding Sobolev norms of the hyperbolic
variables H. We also derive related estimates for the difference of two solu-
tions. The main ingredients in the proofs are the elliptic estimates provided
by Lemma 9.20.

Lemma 9.21 (Controlling Sobolev norms of the elliptic variables in terms of
Sobolev norms of the hyperbolic variables).

(A) Let h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 be initial data for the relativistic
Euler equations (2.17)–(2.19) + (2.20), let �̊i := �i|Σ0 , and let (h, s, uα)
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be the solution provided by Theorem 9.10. In particular, let N ≥ 3 be an
integer, let [0, T ] × T

3 be the slab of existence provided by the theorem,
and let K be the set featured in Theorem 9.10. Assume in addition that
the rectangular components of the initial data are elements of C∞(Σ0),
and note that by Theorem 9.10 and the Sobolev embedding result (9.9),
the rectangular components of the solution belong to C∞([0, T ]×T

3). Let
E and H be the corresponding elliptic and hyperbolic variables as defined
in Definition 9.15. Then there exists a constant C > 0, depending only
on:

1. N
2. K
3. ‖̊h‖HN (Σ0) + ‖̊s‖HN+1(Σ0) +

∑3
a=1 ‖ůa‖HN (Σ0) +

∑3
a=1 ‖�̊a‖HN (Σ0)

4.

‖h‖
C
(
[0,T ],C1(T3)

) + ‖s‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua‖
C
(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a‖
C
(
[0,T ],C1(T3)

),

such that the following estimate holds for t ∈ [0, T ]:

‖E‖HN−1(Σt) ≤ C‖H‖HN−1(Σt). (9.39)

(B) For i = 1, 2, let (h(i), s(i), u(i)) be classical solutions to the relativistic
Euler equations (2.17)–(2.19) + (2.20) that have the properties stated in
part (A). Assume that the slab of existence [0, T ] × T

3 is the same for
both solutions and that the set K is the same for both solutions, that is,
that there exists a compact set K ⊂ intH such that for i = 1, 2, we have
(h(i), s(i), u

1
(i), u

2
(i), u

3
(i))([0, T ] ×T

3) ⊂ intK. Let E(i) and H(i) be the cor-
responding elliptic and hyperbolic variables as defined in Definition 9.15.
Then there exist constants δ > 0 and C > 0, depending only on:

1. N
2. K
3.

2∑

i=1

{
‖̊h(i)‖HN (Σ0) + ‖̊s(i)‖HN+1(Σ0) +

3∑

a=1

‖ůa
(i)‖HN (Σ0) +

3∑

a=1

‖�̊a
(i)‖HN (Σ0)

}

4.

2∑

i=1

{
‖h(i)‖C

(
[0,T ],C1(T3)

) + ‖s(i)‖C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua
(i)‖C

(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa
(i)‖C

(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a
(i)‖C

(
[0,T ],C1(T3)

)
}
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5.
2∑

i=1

{
‖h(i)‖C

(
[0,T ],HN (T3)

) +
3∑

a=1

‖ua
(i)‖C

(
[0,T ],HN (T3)

)

+ ‖s(i)‖C
(
[0,T ],HN+1(T3)

) +
3∑

a=1

‖�a
(i)‖C

(
[0,T ],HN (T3)

)
}

,

such that if ‖H(1) − H(2)‖C(Σt) ≤ δ, then the following estimate holds for
t ∈ [0, T ]:

‖E(1) − E(2)‖HN−1(Σt) ≤ C‖H(1) − H(2)‖HN−1(Σt). (9.40)

Proof. Throughout this proof, C denotes a constant with the dependence-
properties stated in the lemma. We begin by establishing (9.39). Invoking
definitions (9.32a), (9.32b), (9.35), and (9.36), using the fact that (3)curl(S) =
0 [see (4.1)], and using the estimate (9.37b) with M−1 := G−1 and with α∗ > 0
as in the statement of Lemma 9.20 (where G−1 is defined in Definition 9.13,
and we stress that the proof of (9.37b) relied on elliptic estimates), we find
that

‖E‖HN−1(Σt) ≤ CEN ;G−1;α∗ [(�,S)](t)

≤ C
∑

| �I|=N−1

∥
∥(G−1)ab∂a∂ �I�b

∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

∥
∥(G−1)ab∂a∂ �ISb

∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla(∂ �I�)
∥∥∥

L2(Σt)

+ C‖H‖HN−1(Σt). (9.41)

Next, using (9.34), we see that the terms (G−1)ab∂a∂ �I�b, (G−1)ab∂a∂ �ISb,
and (3)curla(∂ �I�) on RHS (9.41) are smooth functions of H and its spatial
derivatives. Thus, using inequality (9.11) to bound RHS (9.34) in the norm
‖ · ‖L2(Σt), we arrive at the desired estimate (9.39). We stress that RHS (9.11)
is linear in the order r derivatives of the solution; this is the reason that
RHS (9.39) is linear in ‖H‖HN−1(Σt).

We now prove (9.40). For i = 1, 2, we let G−1
(i) denote the inverse Riemann-

ian metric corresponding to the ith solution, that is, the inverse Riemannian
metric whose rectangular components are formed by evaluating RHS (9.31)
at the solution corresponding to the labeling index i. To proceed, we use
definitions (9.32a), (9.32b), (9.35), and (9.36), the fact that (3)curl(S(1)) =
(3)curl(S(2)) = 0 [see (4.1)], and the comparison estimate (9.37b) with M−1 :=
G−1

(1) and with α∗ > 0 as in the statement of Lemma 9.20 to deduce that

‖E(1) − E(2)‖HN−1(Σt)

≤ CEN ;G−1
(1);α∗ [(�(1) − �(2), S(1) − S(2))](t)
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≤ C
∑

| �I|=N−1

∥
∥∥(G−1

(1))
ab∂a∂ �I

(
�(1)b − �(2)b

)∥∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥∥
∥(G−1

(1))
ab∂a∂ �I

(
S(1)b − S(2)b

)∥∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla
(
∂ �I(�(1) − �(2))

)∥∥∥
L2(Σt)

+ C‖H(1) − H(2)‖HN−1(Σt). (9.42)

Next, using the triangle inequality, we find that

RHS (9.42)

≤ C
∑

| �I|=N−1

∥∥∥(G−1
(1))

ab∂a∂ �I�(1)b − (G−1
(2))

ab∂a∂ �I�(2)b

∥∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥
∥∥(G−1

(2))
ab − (G−1

(1))
ab
∥
∥∥

C(Σt)

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥
∥∥(G−1

(1))
ab∂a∂ �IS(1)b − (G−1

(2))
ab∂a∂ �IS(2)b

∥
∥∥

L2(Σt)

+ C
∑

| �I|=N−1

∥∥
∥(G−1

(2))
ab − (G−1

(1))
ab
∥∥
∥

C(Σt)

∥∥∂a∂ �IS(2)b

∥∥
L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla(∂ �I�(1)) − (3)curla(∂ �I�(2))
∥∥∥

L2(Σt)

+ C‖H(1) − H(2)‖HN−1(Σt). (9.43)

Using the assumed bounds
∑

| �I|=N−1

∑3
a,b=1

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

≤ C and
∑

| �I|=N−1

∑3
a,b=1

∥
∥∂a∂ �IS(2)b

∥
∥

L2(Σt)
≤ C, (9.34), (9.9), and (9.12) (where the

hypotheses needed to invoke (9.12) are satisfied if ‖H(1) − H(2)‖C(Σt) is suf-
ficiently small), we see that the terms on the first, third, and fifth lines of
RHS (9.43) are ≤ C‖H(1) −H(2)‖HN−1(Σt) as desired. To handle the terms on
the second and fourth lines of RHS (9.43), we use the assumed bounds

∑

| �I|=N−1

3∑

a,b=1

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

≤ C,
∑

| �I|=N−1

3∑

a,b=1

∥∥∂a∂ �IS(2)b

∥∥
L2(Σt)

≤ C,

the mean value theorem estimate
∣∣∣(G−1

(2))
ab − (G−1

(1))
ab
∣∣∣ ≤ C

∣∣H(1) − H(2)

∣∣

(where we are using that RHS (9.31) can be viewed as a smooth function of
(u1, u2, u3)), and the Sobolev embedding result (9.9) to deduce that the terms
on the second and fourth lines of RHS (9.43) are ≤ C‖H(1) − H(2)‖C(Σt) ≤
C‖H(1) − H(2)‖HN−1(Σt) as desired. We have therefore proved (9.40). �
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9.6. Energies for the Wave Equations via the Vectorfield Multiplier Method

In this subsection, we derive a priori estimates for our new formulation of the
relativistic Euler equations. The main result is provided by the next proposi-
tion. The proposition shows in particular that the vorticity and entropy are
one degree more differentiable compared to the standard estimates that fol-
low from first-order formulations of the equations. The main analytic tools in
the proof of the proposition are the elliptic estimates from Sect. 9.5 and the
vectorfield method for wave equations (see Sect. 9.6.1).

Proposition 9.22 (A priori estimates for solutions to the relativistic Euler
equations). Let h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 be initial data for the
relativistic Euler equations (2.17)–(2.19) + (2.20) obeying the assumptions of
Theorem 9.10, and let (h, s, u0, u1, u2, u3) be the corresponding solution. In
particular, let N ≥ 3 be an integer, let [0, T ] × T

3 be the slab of existence
provided by the theorem, and let K be the set featured in theorem. Assume in
addition that the components of the initial data relative to standard coordinates
belong to C∞(T3) and note that by Remark 9.11, the solution components be-
long to C∞([0, T ] × T

3). Let � be the vorticity (see Definition 2.2), and let
�̊i := �i|Σ0 be its initial spatial components.

Then there exists a constant C > 0, depending only on:
1. N
2. K
3. ‖̊h‖HN (Σ0) +

∑3
a=1 ‖ůa‖HN (Σ0) + ‖̊s‖HN+1(Σ0) +

∑3
a=1 ‖�̊a‖HN (Σ0)

4.

‖h‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua‖
C
(
[0,T ],C1(T3)

) + ‖s‖
C
(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a‖
C
(
[0,T ],C1(T3)

)

such that for t ∈ [0, T ], the components of the solution relative to the standard
coordinates verify the following estimates:

‖h‖HN (Σt) +
3∑

a=0

‖uα − δα
0 ‖HN (Σt) + ‖s‖HN+1(Σt)

+
3∑

α=0

‖Sα‖HN (Σt) +
3∑

α=0

‖�α‖HN (Σt)

≤ C exp(Ct) ≤ C exp(CT ) := C∗, (9.44)

where δα
0 is the Kronecker delta.

The proof of Proposition 9.22 is located in Sect. 9.6.4. We will first derive
some preliminary results. We start by noting that we can rewrite the spatial
components of (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b) in concise form as
follows, where f denotes a smooth function of its arguments that is free to vary
from line to line and that satisfies f(0) = 0, V denotes η-orthogonal projection
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of V onto constant-time hypersurfaces (see Sect. 9.1.1), and the hyperbolic
variables H and the elliptic variables E are as in Definition 9.15:

�gh = f(H), (9.45a)

�gu = f(H), (9.45b)

uα∂αS = f(H), (9.45c)

uα∂α� = f(H), (9.45d)

uα∂αD = f(H,E), (9.45e)

uα∂αC = f(H,E). (9.45f)

The crux of the proof of Proposition 9.22 is to derive energy estimates
for the covariant wave equations (9.45a) and (9.45b), energy estimates for the
transport equations (9.45c), (9.45d), (9.45e), and (9.45f), and elliptic estimates
to handle the terms E on RHSs (9.45e) and (9.45f). We have already derived
the necessary elliptic estimates in Sect. 9.5. In the next three subsections, we
will outline the energy estimates, which are standard.

9.6.1. Energy Estimates for Covariant Wave Equations. The wave operator
in (9.45a) and (9.45b) is with respect to the acoustical metric g introduced in
Definition 2.6. These are covariant wave equations for the scalar quantities h
and uα. Estimates for such equations can be derived by using the well-known
vectorfield multiplier method32 for wave equations, which we outline in this
subsubsection.

Let ϕ be any element of {h, u1, u2, u3} (in practice, we will not need to
derive separate energy estimates for u0 since estimates for u0 can be obtained
as a consequence of the estimates for the spatial components of u and the
normalization condition ηκλuκuλ = −1). We start by defining the energy-
momentum tensor associated to a scalar function ϕ:

Tαβ = Tαβ [ϕ] := (∂αϕ)(∂βϕ) − 1
2
gαβ(g−1)μν(∂μϕ)(∂νϕ). (9.46)

A crucial property of Tαβ is that it satisfies the dominant energy condition:
TαβXαY β ≥ 0 whenever the vectorfields X and Y are future-directed33 and
timelike34 with respect to g. In practice, the dominant energy condition allows
one to construct energies that are coercive along causal (with respect to g)
hypersurfaces;35 see Eq. (9.56) below for the energy that we use in deriving a
priori estimates for h and u.

32In deriving a priori estimates, in addition to the multiplier method, we will use only the
simplest version of the vectorfield commutator method. Specifically, we will commute the
equations only with the coordinate spatial derivative operators ∂ �I .
33By a “future-directed” vectorfield X, we mean that X0 > 0.
34X is defined to be timelike with respect to g if gαβXαXβ < 0.
35By a “causal hypersurface,” we mean a hypersurface whose future-directed unit normal is
either timelike with respect to g or null with respect to g at each point.
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Next, for any vectorfield X (soon to be employed in the role of a “mul-
tiplier vectorfield”), we let (X)π be its deformation tensor relative to g, which
takes the following form relative to arbitrary coordinates:

(X)παβ := gβμ∇αXμ + gαμ∇βXμ. (9.47)

In (9.47) and in the rest of this subsubsection, ∇ is the covariant derivative
induced by g. Next, we define the energy current vectorfield corresponding to
X as follows:

(X)Jα = (X)Jα[ϕ] := (g−1)αμTμβ [ϕ]Xβ − Xαϕ2. (9.48)

From straightforward computations, we derive the following identity:

∇α
(X)Jα = (�gϕ)Xα∂αϕ +

1
2
(g−1)αγ(g−1)βδTαβ

(X)πγδ

− (∇αXα)ϕ2 − 2ϕ(Xα∂αϕ). (9.49)

Applying the divergence theorem on the spacetime slab [0, T ] × T
3 and us-

ing (9.49), we deduce the following identity:
∫

Σt

gαβ
(X)Jα[ϕ]N̂β dμg

=
∫

Σ0

gαβ
(X)Jα[ϕ]N̂β dμg

−
∫

[0,t]×T3

{
(�gϕ)Xα∂αϕ +

1
2
(g−1)αγ(g−1)βδTαβ

(X)πγδ

}
dμg

+
∫

[0,t]×T3

{
(∇αXα)ϕ2 + 2ϕ(Xα∂αϕ)

}
dμg. (9.50)

In (9.50), dμg is the volume form that g induces on [0,t] ×T
3, N̂ is the future-

directed unit normal to Σt with respect to the metric g, and dμg is the volume
form that g induces on Σt, where g is the first fundamental form of Σt, that
is, g

ij
:= gij for 1 ≤ i, j ≤ 3. We also note that relative to the standard

coordinates, N̂α = − (g−1)α0√
|(g−1)00| , dμg =

√|detg| dx1dx2dx3dx0, and dμg =
√

detg dx1dx2dx3 =
√|(g−1)00|√|detg|dx1dx2dx3, where the last equality is

a basic linear algebraic identity. Note that N̂ is future-directed and timelike
with respect to g, and that we used the fact that (g−1)00 < 0 (which is a simple
consequence of the formula (2.13b) and our assumption that 0 < c ≤ 1).

From the above discussion, it follows that along any spacelike (with re-
spect36 to g) hypersurface with future-directed unit normal N̂ , we can con-
struct a positive-definite energy density gαβ

(X)Jα[ϕ]N̂β using any multiplier
vectorfield X that is future-directed and timelike with respect to g. For the
basic a priori estimates of interest to us, we will apply the above constructions
along Σt with X := u, which is future-directed timelike with respect to g. As we
described in Footnote 18, we cannot generally use X := ∂t because g(∂t, ∂t) > 0

36A hypersurface is spacelike with respect to g if, at each point, its unit normal is timelike
with respect to g.
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can occur when
∑3

a=1 |ua| is large; in contrast, note that by (2.13a) and the
normalization condition ηκλuκuλ = −1, we have gκλuκuλ = −1. Thus, we
define the following energy (where N̂α = − (g−1)α0√

|(g−1)00| ):

Ewave(t) = Ewave[ϕ](t) :=
∫

Σt

gαβ
(u)Jα[ϕ]N̂β dμg. (9.51)

From (9.50), definition (9.51), and the standard expansion37 of covariant deriva-
tives in terms of partial derivatives and Christoffel symbols (which in particular
can be used to derive the identity (u)παβ = uκ∂κgαβ + gακ∂βuκ + gβκ∂αuκ),
we deduce the following energy identity relative to the standard coordinates:

Ewave[ϕ](t) = Ewave[ϕ](0) −
∫

[0,t]×T3
(�gϕ)uκ∂κϕ dμg

− 1
2

∫

[0,t]×T3
(g−1)αγ(g−1)βδTαβ [ϕ]uκ∂κgγδ dμg

−
∫

[0,t]×T3
(g−1)βδTαβ [ϕ]∂δu

α dμg

+
∫

[0,t]×T3

{
(∂κuκ)ϕ2 + Γ κ

κ λuλϕ2 + 2ϕuκ∂κϕ
}

dμg. (9.52)

On RHS (9.52),

Γ γ
α β :=

1
2
(g−1)γδ {∂αgδβ + ∂βgαδ − ∂δgαβ} (9.53)

are the Christoffel symbols of g relative to the standard coordinates. Note that
by (2.13a)–(2.13b) we have that

Γ γ
α β = f(h, s, u, ∂h, S, ∂u), (9.54)

where f is a smooth function (depending on α, β, and γ).
Next, with the help of (2.13a)–(2.13b) and the normalization condition

ηκλuκuλ = −1, we compute that

gαβ
(u)Jα[ϕ]N̂β

=
{
c2T0β [ϕ]uβ + (1 − c2)u0Tαβ [ϕ]uαuβ + u0ϕ2

} 1
√|(g−1)00|

=
1
2u0
{
c2(∂tϕ)2 + c2δab(∂aϕ)∂bϕ + (1 − c2)(uα∂αϕ)2

}

√|(g−1)00|

+

{
c2(∂tϕ)ua∂aϕ + u0ϕ2

}

√|(g−1)00| , (9.55)

where δab is the Kronecker delta. From (9.51) and (9.55), it follows that

37For example, ∇αXβ = ∂αXβ + Γ β
α γXγ , where Γ β

α γ is defined by (9.53).
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Ewave[ϕ](t)

=
1
2

∫

Σt

u0
{
c2(∂tϕ)2 + c2δab(∂aϕ)∂bϕ + (1 − c2)(uα∂αϕ)2

} dμg
√|(g−1)00|

+
∫

Σt

{
c2(∂tϕ)ua∂aϕ + u0ϕ2

} dμg
√|(g−1)00| . (9.56)

The energy Ewave[ϕ](t) will yield L2 control of ϕ and its first derivatives. In
Sect. 9.6.3, we will establish the coerciveness Ewave[ϕ](t). To obtain L2 control
of the higher-order spatial derivatives of ϕ, one can use energies of the form
Ewave[∂ �Iϕ], where �I is a spatial multi-index.

9.6.2. Energy Estimates for Transport Equations. One can derive energy es-
timates for transport equations of the form uα∂αϕ = f by relying on the
following energy:

Etransport[ϕ](t) :=
∫

Σt

ϕ2 dx, (9.57)

as in the proof of Lemma 9.6. The analog of the wave equation energy iden-
tity (9.52) is the following integral identity, whose simple proof follows from
the ideas featured in the proof of Lemma 9.6:

Etransport[ϕ](t) = Etransport[ϕ](0) +
∫ t

0

∫

Στ

{
∂a

(
ua

u0

)}
ϕ2 dx dτ

+ 2
∫ t

0

∫

Στ

ϕ
uα∂αϕ

u0
dx dτ. (9.58)

To control the higher-order derivatives of ϕ, one can rely on energies of the form
Etransport[∂ �Iϕ]. We mention that the argument we have sketched here relies
on the basic fact that u0 > 0, which allows us to divide by u0 on RHS (9.58);
for the relativistic Euler equations, this fact follows from the normalization
condition ηκλuκuλ = −1 and the fact that u is future-directed.

9.6.3. Comparison of the Energies with the Sobolev Norm. The coerciveness
properties of the wave equation energy Ewave[ϕ](t) constructed in Sect. 9.6.1
are tied to the metric g; see (9.51). In order to obtain our results, we need
Ewave[ϕ](t) to be uniformly comparable to a corresponding Sobolev norm along
Σt. More precisely, we need to ensure the existence of a constant C > 1 such
that on the slab [0, T ] × T

3 of existence guaranteed by Theorem 9.10, the
following estimates hold:

C−1
{

‖ϕ‖2
HN (Σt)

+ ‖∂tϕ‖2
HN−1(Σt)

}
≤

∑

0≤| �I|≤N−1

Ewave[∂ �Iϕ](t)

≤ C
{

‖ϕ‖2
HN (Σt)

+ ‖∂tϕ‖2
HN−1(Σt)

}
.

(9.59)

To see that such a constant C exists, we first use Young’s inequality, (2.20),
and Cauchy–Schwarz to bound the first product in braces on the last line of
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RHS (9.56) as follows:

c2(∂tϕ)ua∂aϕ

≥ −1
2
c2

⎛

⎝

√√√
√

3∑

i=1

(ui)2

⎞

⎠ (∂tϕ)2 − 1
2
c2

⎛

⎝

√√√
√

3∑

i=1

(ui)2

⎞

⎠ δab(∂aϕ)∂bϕ

= −1
2
c2
(√

(u0)2 − 1
)

(∂tϕ)2 − 1
2
c2
(√

(u0)2 − 1
)

δab(∂aϕ)∂bϕ. (9.60)

Next, we recall that Theorem 9.10 guarantees that on [0, T ] ×T
3, the solution

never escapes the compact subset K featured in the statement of the theorem.
In view of (9.60), we see that this ensures that on [0, T ] × T

3, the product
c2(∂tϕ)ua∂aϕ on the last line of RHS (9.56) can be absorbed into the sum
1
2c2u0(∂tϕ)2 + 1

2c2u0δab(∂aϕ)∂bϕ from the first line of RHS (9.56), with room
to spare. This implies that for solutions contained in K, the integrands on
RHS (9.56) are in total uniformly comparable to

∑3
α=0(∂αϕ)2 + ϕ2. This also

ensures that on [0, T ] × T
3, the volume form

dμg
√|(g−1)00| on Σt is uniformly

comparable38 to dx := dx1dx2dx3. From these observations, it readily follows
that a C > 1 exists such that (9.59) holds.

9.6.4. Proof of Proposition 9.22. Recall that the assumptions of the propo-
sition guarantee that we have a smooth solution to the system (2.17)–(2.19)
+ (2.20). Consider the scalar component functions

h, uα, Sα,�α, Cα,D, (9.61)

introduced in Sect. 2. According to Theorem 3.1, they satisfy the system of
evolution equations given by Eqs. (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b).
Next, we recall that the hyperbolic quantities H and the elliptic quantities
E were defined in Definition 9.15. To prove the proposition, we claim that it
suffices to show that the following inequality holds for t ∈ [0, T ]:

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.62)

where in (9.62) and in the rest of this proof, C is as in the statement of Propo-
sition 9.22. For once we have shown (9.62), we can use Gronwall’s inequality
to deduce (recalling that C is allowed to depend on the initial data and can
vary from line to line) that the following estimate holds for t ∈ [0, T ]:

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

exp(Ct) ≤ C exp(Ct) ≤ C exp(CT ). (9.63)

Then from (9.39) and (9.63) we conclude, in view of Definition 9.15, the desired
bound (9.44), except for the estimates for u0, S0, and �0. To obtain the
desired estimate for these quantities, we first express u0 − 1, S0, �0, ∂au0,
∂aS0, and ∂a�0 as f(H,E), with f smooth and satisfying f(0) = 0 [this is

38To see this, it is helpful to note the following identity, which holds relative to the standard

coordinates:
dμg√

|(g−1)00| = c−3 dx1dx2dx3. This identity follows from (2.14a) and the linear

algebraic identity detg = (g−1)00detg.
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possible in view of definition (9.32e) and (9.33c)]. We then use Lemma 9.4 to
deduce that ‖f(H,E)‖HN−1(Σt) ≤ C‖H‖HN−1(Σt) +C‖E‖HN−1(Σt). Finally, we
use the elliptic estimate (9.39) and (9.63) to conclude that C‖H‖HN−1(Σt) +
C‖E‖HN−1(Σt) ≤ RHS (9.44), which yields the desired estimates.

It remains for us to prove (9.62). We start by noting that the results
described in Sects. 9.6.1–9.6.3 can be used to derive the following estimates,
where we recall that V denotes the spatial components of V (i.e., the
η-orthogonal projection of V onto constant-time hypersurfaces, as in
Sect. 9.1.1):

‖h‖2
HN (Σt)

+ ‖∂th‖2
HN−1(Σt)

≤ C
{

‖h‖2
HN (Σ0)

+ ‖∂th‖2
HN−1(Σ0)

}

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.64)

‖u‖2
HN (Σt)

+ ‖∂tu‖2
HN (Σt)

≤ C
{

‖u‖2
HN (Σ0)

+ ‖∂tu‖2
HN (Σt)

}

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.65)

‖S‖2
HN−1(Σt)

≤ C‖S‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.66)

‖�‖2
HN−1(Σt)

≤ C‖�‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.67)

‖D‖2
HN−1(Σt)

≤ C‖D‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ,

(9.68)

‖C‖2
HN−1(Σt)

≤ C‖C‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ.

(9.69)

The estimates (9.64)–(9.69) are standard and can be derived by commuting
the evolution equations of Theorem 3.1 (more precisely, only the evolution
equations for the spatial components of u, �, S, and C) with spatial de-
rivative operators ∂ �I and using the energy identities (9.52) and (9.58) (and
their analogs for the ∂ �I -differentiated solution variables), the coerciveness es-
timate (9.59), Lemma 9.17, and the Sobolev–Moser-type estimate (9.11). We
stress that RHS (9.11) is linear in the order r derivatives of the solution; this is
the reason the integrands on RHS (9.64)–(9.69) are quadratic in ‖H‖HN−1(Στ )

and ‖E‖HN−1(Στ ) [the sup-norm factors on RHS (9.11) can be bounded by
≤ C since those factors are among the quantities that constants C are allowed
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to depend on]. The non-standard aspect of the remaining part of the proof
is the appearance of the term ‖E‖2

HN−1(Στ ) on RHSs (9.68)–(9.69); we clarify
that these terms are generated by the terms ∂aSb and ∂a�b on RHSs (3.9a)
and (3.11b) [see definition (9.32b)]. Next, adding (9.64)–(9.69) and appealing
to Definition 9.15, we deduce that

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ. (9.70)

Finally, from (9.70) and the elliptic estimate (9.39), we conclude the desired
bound (9.62). �

9.7. Proof of Theorem 9.12

We now prove Theorem 9.12, which is the main result of Sect. 9. By The-
orem 9.10, we need only to show that (i) under the regularity assumptions
on the initial data stated in Theorem 9.12, the standard local well-posedness
results (9.28a)–(9.28b) can be upgraded to (9.30a)–(9.30b) and (ii) that the
solution depends continuously on the initial data, where continuity is measured
in the norms corresponding to the function spaces featured in (9.30a)–(9.30b).
Throughout this proof, K denotes the set featured in the statement of Theo-
rem 9.10. To proceed, we let (̊h(m), s̊(m), ů

i
(m)) ⊂ (C∞(T3)

)5 be a sequence of
smooth initial data such that as m → ∞, we have

∥∥∥̊h(m) − h̊
∥∥∥

HN (Σ0)
→ 0,

∥∥∥ůi
(m) − ůi

∥∥∥
HN (Σ0)

→ 0, (9.71)

∥∥̊s(m) − s̊
∥∥

HN+1(Σ0)
→ 0,

∥∥∥�̊i
(m) − �̊i

∥∥∥
HN (Σ0)

→ 0, (9.72)

where �̊i
(m) denotes the initial vorticity of the mth element of the sequence

and �̊i is as in the statement of the theorem. Let (h(m), s(m), u
α
(m), S

α
(m),�

α
(m))

denote the corresponding sequence of solution variables. Theorem 9.10 yields
(see, for example, [31], for additional details) that for m sufficiently large,
the element (h(m), s(m), u

α
(m)) is a C∞ classical solution to Eqs. (2.17)–(2.19)

+ (2.20) on the fixed slab [0, T ] × T
3 with

(h(m)(p), s(m)(p), u1
(m)(p), u2

(m)(p), u3
(m)(p)) ∈ intK

for p ∈ [0, T ] × T
3, and that on the same slab, (h(m), s(m), u

α
(m), S

α
(m),�

α
(m))

is a C∞ solution to the equations of Theorem 3.1 [which are consequences
of (2.17)–(2.19) + (2.20)]. Moreover, Theorem 9.10 also implies that the se-
quence converges to the solution in the following norms as m → ∞:

∥∥h(m) − h
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.73)
∥
∥∥uα

(m) − uα
∥
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.74)
∥∥s(m) − s

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.75)
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∥
∥∥Sα

(m) − Sα
∥
∥∥

C
(
[0,T ],HN−1(T3)

) → 0, (9.76)
∥∥∥�α

(m) − �α
∥∥∥

C
(
[0,T ],HN−1(T3)

) → 0. (9.77)

Next, we use the convergence results (9.73)–(9.77), Theorem 9.10, and
the a priori estimates provided by Proposition 9.22 to deduce that exist a
constant C > 0, depending on T and on the four types of quantities listed just
above (9.44), and a positive integer m0 such that

sup
m≥m0

sup
τ∈[0,T ]

‖s(m)‖HN+1(Στ ) ≤ C, (9.78)

sup
m≥m0

sup
τ∈[0,T ]

‖Sα
(m)‖HN (Στ ) ≤ C, (9.79)

sup
m≥m0

sup
τ∈[0,T ]

‖�α
(m)‖HN (Στ ) ≤ C. (9.80)

Since Hr(T3) is a Hilbert space for r ∈ R, it follows from the norm-boundedness
results (9.78)–(9.80) that for each τ ∈ [0, T ], there exist subsequences s(mn),
Sα

(mn), and �α
(mn) that weakly converge in HN+1(Στ ), HN (Στ ), and HN (Στ )

respectively as n → ∞. Moreover, since the norm is weakly lower semicontin-
uous in a Hilbert space, it follows that the limits are bounded, respectively, in
the norms ‖ · ‖HN+1(Στ ), ‖ · ‖HN (Στ ), and ‖ · ‖HN (Στ ), by ≤ C, where C is the
same constant found on RHSs (9.78)–(9.80). From (9.76) to (9.77), it follows
that the limits must be s, Sα, and �α respectively. We have therefore shown
that

sup
τ∈[0,T ]

‖s‖HN+1(Στ ) ≤ C, (9.81)

sup
τ∈[0,T ]

‖Sα‖HN (Στ ) ≤ C, (9.82)

sup
τ∈[0,T ]

‖�α‖HN (Στ ) ≤ C. (9.83)

To complete the proof of (9.30b), we must show that for each spatial
multi-index �I with | �I| = N , the map t → ∂ �IS

α(t, ·) is a continuous map from
[0, T ] into L2(T3), and similarly for �α (the desired time-continuity results
for s then follow from the relation ∂is = Si). To keep the presentation short,
we illustrate only the right-continuity of these maps at t = 0; the general
statement can be proved by making minor modifications to the argument that
we give. That is, we will show that

lim
t↓0

‖∂ �IS
α(t, ·) − ∂ �I S̊

α(·)‖L2(T3) = 0, | �I| = N, (9.84a)

lim
t↓0

‖∂ �I�
α(t, ·) − ∂ �I�̊

α(·)‖L2(T3) = 0, | �I| = N, (9.84b)

where S̊α(·) := Sα(0, ·). The rest of our proof is based on Lemmas 9.6 and 9.20,
but to apply the lemmas, we first have to derive some preliminary results. We
will use the estimates provided by Lemma 9.4 without giving complete details
each time we use them; we will refer to these estimates as the “standard
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Sobolev calculus.” In the rest of the proof, we will refer to the variable sets H,
E, AH, AH,E, and A from Definition 9.15.

As a first step in proving (9.84a)–(9.84b), we will show that

H, AH ∈ C
(
[0, T ],HN−1(T3)

)
, (9.85)

where H and AH are defined in (9.32a) and (9.32c). Note that by (9.33a) and
the standard Sobolev calculus, the desired result AH ∈ C

(
[0, T ],HN−1(T3)

)

would follow from H ∈ C
(
[0, T ],HN−1(T3)

)
. The latter statement is equiv-

alent to showing that ∂ �IH ∈ C
(
[0, T ], L2(T3)

)
for | �I| ≤ N − 1. All of these

results, except in the case of the top-order (i.e., order N − 1) derivatives of
Ci and D, follow from the standard local well-posedness time-continuity re-
sults (9.28a)–(9.28b), and the standard Sobolev calculus. Thus, to complete
the proof of (9.85), we need only to show that for i = 1, 2, 3, we have

∂ �ICi, ∂ �ID ∈ C
(
[0, T ], L2(T3)

)
, | �I| = N − 1. (9.86)

The desired result (9.86) follows from using Eqs. (3.9a) and (3.11b) [more pre-
cisely, we need only to consider the spatial components of (3.11b)], the bound-
edness results (9.81)–(9.83), the standard local well-posedness time-continuity
results (9.28a)–(9.28b), and the standard Sobolev calculus to deduce that ∂ �ICi

and ∂ �ID solve transport equations that satisfy the hypotheses of Lemma 9.6;
put succinctly, we can apply Lemma 9.6 with f := ∂ �ICi and f := ∂ �ID. We have
therefore proved (9.85). In particular, it follows from (9.85) and the definition
of AH that for i = 1, 2, 3, we have

(3)curli(�), (3)curli(S) ∈ C
(
[0, T ],HN−1(T3)

)
. (9.87)

Next, we note that in view of Definition 9.15, Lemma 9.17 (in particular
the relation (9.33b) for ∂aS0 and ∂a�0), (9.85), and the standard Sobolev
calculus, the desired results (9.84a)–(9.84b) would follow as a consequence of
the following convergence result:

lim
t↓0

‖∂ �IE(t, ·) − ∂ �IE(0, ·)‖L2(T3) = 0, | �I| = N − 1. (9.88)

To establish (9.88), we first use (9.85), (9.34), and the standard Sobolev
calculus to deduce the following facts, where (G−1)ij is defined in Defini-
tion 9.13:

(G−1)ab∂a∂ �ISb, (G−1)ab∂a∂ �I�b ∈ C
(
[0, T ], L2(T3)

)
, | �I| = N − 1. (9.89)

In the rest of the proof, α∗ > 0 is as in the statement of Lemma 9.20 in
the case (M−1)ij(t, x) := (G−1)ij(t, x). Next, setting

(G̊−1)ij(·) := (G−1)ij(0, ·), (9.90)

applying Lemma 9.20 with (M−1)ij := (G̊−1)ij , and appealing to defini-
tion (9.32b), we see that in order to prove (9.88), it suffices to show the
following convergence result:

lim
t↓0

EN ;G̊−1;α∗ [(�,S) − (�̊, S̊)](t) = 0, (9.91)

where (�̊, S̊) := (�,S)|Σ0 .
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To initiate the proof of (9.91), we let ϕ ∈ H−N (T3) be any element of
the dual space of HN (T3). From the below-top-order continuity result (9.28b),
the top-order boundedness results (9.82)–(9.83), and the density of C∞ func-
tions in H−N (T3), it is straightforward to deduce that the following “weak
continuity” result holds for i = 1, 2, 3:

lim
t↓0

∫

T3
Si(t, x)ϕ dx =

∫

T3
S̊iϕ dx. (9.92)

Since ϕ was arbitrary, we conclude that Si(t, ·) weakly converges to S̊i in
HN (T3) as t ↓ 0. Similarly, �i(t, ·) weakly converges to �̊i in HN (T3) as t ↓ 0.
We now let 〈·, ·〉G̊−1;α∗ denote the inner product (9.35) on the Hilbert space
(
HN (Σt)

)3 × (HN (Σt)
)3, and we let 〈·, ·〉 denote the standard inner product

on the same Hilbert space (obtained by keeping only the two sums on the last
line of RHS (9.35) and replacing N − 1 with N in the summation bounds).
By Lemma 9.20, the two corresponding norms [i.e., the norms on the left- and
right-hand sides of (9.37a)–(9.37b)] are equivalent. It is a basic result of func-
tional analysis that given these two inner products with equivalent norms, a
sequence weakly convergences relative to 〈·, ·〉G̊−1;α∗ if and only if it weakly
converges relative to 〈·, ·〉. In particular, in view of the weak convergence re-
sults for Si(t, ·) and �i(t, ·) proved above, we infer that (�(t, ·), S(t, ·)) weakly
converges to (�̊(·), S̊(·)) relative to the inner product 〈·, ·〉G̊−1;α∗ as t ↓ 0. More-
over, it is another basic result of functional analysis that based on this weak
convergence and Lemma 9.20, in order to prove the result (9.91), it suffices to
show that

lim sup
t↓0

EN ;G̊−1;α∗ [(�,S)](t) ≤ EN ;G̊−1;α∗ [(�̊, S̊)]. (9.93)

Moreover, since the standard local well-posedness time-continuity results (9.28a)
and (9.9) imply that limt↓0

∥∥∥(G−1)ij(t, ·) − (G̊−1)ij
∥∥∥

C(T3)
= 0, it follows from

definitions (9.35) and (9.36) and the top-order boundedness results (9.81)–
(9.83) that in order to prove (9.93), it suffices to show that

lim sup
t↓0

EN ;G−1;α∗ [(�,S)](t) ≤ EN ;G̊−1;α∗ [(�̊, S̊)], (9.94)

where we stress that the inverse metric G−1 on LHS (9.94) depends on t
[which is different compared to (9.93)]. In fact, our arguments will yield a
stronger statement than (9.94). More precisely, we will show the following
time-continuity result:

lim
t↓0

EN ;G−1;α∗ [(�,S)](t) = EN ;G̊−1;α∗ [(�̊, S̊)], (9.95)

To proceed, we use definitions (9.35) and (9.36) and the standard local well-
posedness time-continuity results (9.28a)–(9.28b) to deduce that all terms in
the definition of EN ;G−1;α∗ [(�,S)](t) have been shown to have the desired
continuous time dependence at except for the ones depending on the order
N derivatives of � or S [i.e., the ones corresponding to the terms on the
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first four lines of RHS (9.35)]. The continuous time dependence of these re-
maining four terms follows from (9.87), (9.89), and the fact that (G−1)ij ∈
C
(
[0, T ], C(T3)

)
[which follows from the standard local well-posedness time-

continuity results (9.28a) and (9.9)]. We have therefore proved (9.95), which
finishes the proof of the desired result (9.30b).

To complete our proof of Theorem 9.12, we need to show continuous
dependence on the initial data. To proceed, we let (̊h(m), ů

i
(m), s̊(m)) be a se-

quence of initial data (not necessarily C∞ now) such that as m → ∞, the con-
vergence results (9.71)–(9.72) hold. We again let (h(m), s(m), u

α
(m), S

α
(m),�

α
(m))

denote the corresponding sequence of solution variables (which are not neces-
sarily C∞ now). We aim to show that the sequence converges to the limiting
solution (h, uα, s, Sα,�α) in the norm ‖ · ‖

C
(
[0,T ],HNT3)

) as m → ∞. To pro-

ceed, we first note that Theorem 9.10 yields that for m sufficiently large, the
element (h(m), s(m), u

α
(m), S

α
(m),�

α
(m)) is a classical solution (not necessarily

C∞ now) to Eqs. (2.17)–(2.19) + (2.20) on the fixed slab [0, T ] × T
3 with

(h(m)(p), s(m)(p), u1
(m)(p), u2

(m)(p), u3
(m)(p)) ∈ intK for p ∈ [0, T ] × T

3, that it
also is a strong solution39 to the equations of Theorem 3.1, that there exists
an integer m0 such that

sup
m≥m0

‖s(m)‖C
(
[0,T ],HN+1(T3)

) ≤ C, (9.96)

sup
m≥m0

‖Sα
(m)‖C

(
[0,T ],HN (T3)

) ≤ C, (9.97)

sup
m≥m0

‖�α
(m)‖C

(
[0,T ],HN (T3)

) ≤ C, (9.98)

and that the following convergence results (which are below top-order for S
and �) hold as m → ∞:

∥∥h − h(m)

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.99)
∥
∥∥uα − uα

(m)

∥
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.100)
∥∥s − s(m)

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.101)
∥∥
∥Sα − Sα

(m)

∥∥
∥

C
(
[0,T ],HN−1(T3)

) → 0, (9.102)
∥
∥∥�α − �α

(m)

∥
∥∥

C
(
[0,T ],HN−1(T3)

) → 0. (9.103)

In view of (9.99)–(9.103), we see that to complete our proof of Theorem 9.12,
we need only to show continuity in the top-order norms. That is, we must show
that if | �I| = N , then as m → ∞, we have

∥∥∥∂ �IS
α − ∂ �IS

α
(m)

∥∥∥
C
(
[0,T ],L2(T3)

) → 0, (9.104)

39By “strong solution,” we mean in particular that at each fixed t ∈ [0, T ], the equations of
Theorem 3.1 are satisfied for almost every x ∈ T

3.
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∥
∥∥∂ �I�

α − ∂ �I�
α
(m)

∥
∥∥

C
(
[0,T ],L2(T3)

) → 0. (9.105)

To proceed, we first review an approach to proving the standard esti-
mates (9.99)–(9.103). These estimates can be proved by applying Kato’s ab-
stract framework [17–19], which is designed to handle first-order hyperbolic
systems in a rather general Banach space setting. In particular, one can apply
Kato’s framework to the first-order system (2.17)–(2.19) + (2.20); this is de-
scribed in detail, for example, in [31]. To prove (9.104)–(9.105), we will modify
Kato’s framework so that it applies to the hyperbolic variables H and the
elliptic variables E from Definition 9.15.

To employ Kato’s framework, one relies on the propagators U(t, τ) :=
U(t, τ ;H) for the linear homogeneous hyperbolic system corresponding to the
(nonlinear) first-order hyperbolic system that H satisfies. To shorten the pre-
sentation, we will not explicitly state the form of this linear first-order hyper-
bolic system; see Remark 9.16 for further discussion of its nature. By definition,
U(t, τ ;H) maps initial data given at time τ to the solution of the linear homo-
geneous hyperbolic system (whose principal coefficients depend on H) at time
t. Similarly, one relies on the operators U(m)(t, τ) := U(t, τ ;H(m)) correspond-
ing to the homogeneous linear system whose principal coefficients depend on
H(m). By Duhamel’s principle, we have

H(t) = U(t, 0)H̊ +
∫ t

τ=0

U(t, τ)f (H(τ),E(τ)) dτ, (9.106)

H(m)(t) = U(m)(t, 0)H̊(m) +
∫ t

τ=0

U(m)(t, τ)f
(
H(m)(τ),E(m)(τ)

)
dτ, (9.107)

where H̊ and H̊(m) respectively denote the initial data of H and H(m), and
on RHSs (9.106)–(9.107), f denotes the inhomogeneous term in the first-order
hyperbolic system satisfied by the elements of H and H(m). We have not
explicitly stated the form of f since its precise structure is not important for
our arguments here; what matters is only the following basic facts (that can
easily be checked): f is a smooth function of its arguments satisfying f(0) = 0,
and the same f appears on RHSs (9.106)–(9.107).

The strategy behind Kato’s framework is to control the difference H(t, ·)−
H(m)(t, ·) in the norm ‖ · ‖HN−1(T3) by subtracting (9.106)–(9.107), splitting
the right-hand side of the resulting equation into various pieces, and bounding
each piece by exploiting some standard properties of the propagators U(t, τ)
and U(m)(t, τ). This is explained in detail in [31, Section 7.4], and most of
the arguments given there for controlling ‖H(t, ·) − H(m)(t, ·)‖HN−1(T3) go
through without any substantial changes. The one part of the argument that
does require substantial changes is: in order to obtain a closed inequality for
‖H(t, ·) − H(m)(t, ·)‖HN−1(T3), one needs to show that the difference of the
inhomogeneous terms on RHSs (9.106)–(9.107) satisfies the following estimate
for t ∈ [0, T ]:

∥∥f(H,E) − f(H(m),E(m))
∥∥

HN−1(Σt)
≤ C‖H − H(m)‖HN−1(Σt), (9.108)
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where the key point is that the quantity ‖E − E(m)‖HN−1(Σt) does not appear
on RHS (9.108).

The estimate (9.108) can be obtained with the help of elliptic estimates,
as we now explain. First, we note that the top-order norm-boundedness re-
sults (9.96)–(9.98) and the convergence results (9.99)–(9.103) imply that

lim
m→∞

{∥∥H − H(m)

∥∥
C
(
[0,T ],L2(T3)

) +
∥∥E − E(m)

∥∥
C
(
[0,T ],L2(T3)

)
}

= 0,

(9.109)

and that there exists an integer m0 and a constant C > 0 such that

‖H‖
C
(
[0,T ],HN−1(T3)

) + ‖E‖
C
(
[0,T ],HN−1(T3)

) ≤ C, (9.110)

sup
m≥m0

{∥∥H(m)

∥∥
C
(
[0,T ],HN−1(T3)

) +
∥∥E(m)

∥∥
C
(
[0,T ],HN−1(T3)

)
}

≤ C. (9.111)

From (9.109), (9.110)–(9.111), and the Sobolev interpolation result (9.14), we
deduce that if N ′ < N − 1, then

lim
m→∞

{∥
∥H − H(m)

∥
∥

C
(
[0,T ],HN′ (T3)

) +
∥
∥E − E(m)

∥
∥

C
(
[0,T ],HN′ (T3)

)
}

= 0.

(9.112)

Fixing a real number N ′ satisfying 3/2 < N ′ < 2 and using (9.112) and the
Sobolev embedding result (9.9), we deduce that

lim
m→∞

{∥∥H − H(m)

∥∥
C([0,T ]×T3)

+
∥∥E − E(m)

∥∥
C([0,T ]×T3)

}
= 0. (9.113)

Next, we use (9.110), (9.111), (9.113), (9.9), and (9.12) to deduce that there
is a constant C > 0 such that if m is sufficiently large, then for t ∈ [0, T ], the
following estimate holds for the function f appearing on RHSs (9.106)–(9.107):
∥∥f(H,E) − f(H(m),E(m))

∥∥
HN−1(Σt)

≤ C‖H − H(m)‖HN−1(Σt)

+ C‖E − E(m)‖HN−1(Σt). (9.114)

Next, we use (9.110), (9.111), (9.113), and (9.40) to deduce that if m is suf-
ficiently large, then for t ∈ [0, T ], the last term on RHS (9.114) obeys the
following bound:

‖E − E(m)‖HN−1(Σt) ≤ C‖H − H(m)‖HN−1(Σt). (9.115)

The desired bound (9.108) follows from (9.114) and (9.115). Kato’s framework
(see [31, Section 7.4]) then allows one to conclude that

lim
m→∞

∥∥H − H(m)

∥∥
C
(
[0,T ],HN−1(T3)

) = 0. (9.116)

Moreover, (9.115) and (9.116) imply that

lim
m→∞

∥∥E − E(m)

∥∥
C
(
[0,T ],HN−1(T3)

) = 0. (9.117)

Finally, in view of Definition 9.15 and the relation (9.33c), we note that the
desired convergence results (9.104)–(9.105) follow from (9.116) to (9.117) and
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the standard Sobolev calculus [which is needed to handle the components α = 0
in (9.104)–(9.105)]. �
Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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